Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10n + k
Vì :10n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k2+k+k = 9k2 + 2k
Ta có 444........4<n chữ số 4>=4k
Vậy a+b+1= 9k2 +2k+4k+1 = <3k>2 +2.3k.1 +12 = <3k +1>2
Vậy a+b+1 là một số chính phương
Đặt 1111...11 (n chữ số 1) =k
Ta có: 111..11 (2n chữ số 1) =k.10^n + k
Vì 10^n = 9k+1
111...11 (2n chữ số 1) = k.(9k+1) + k = 9k^2 + k + k = 9k^2 + 2k
Ta có :444...44 (n chữ số 4) = 4k
Suy ra: A+B+1 = 9k^2 + 2k + 4k + 1 = (3k)^2 + 2.3k.1 + 1^2 = (3k+1)^2
Vậy A+B+1 là số chính phương.
Chúc bạn học tốt
Ta có:
A + B + 1 = 1111...1 + 4444...4 + 1
(2n c/s 1) (n c/s 4)
= 1111...1000...0 + 1111...1 + 1111...1.4 + 1
(n c/s 1)(n c/s 0) (n c/s 1) (n c/s 1)
= 1111...1.1000...0 + 1111...1 + 1111...1.4 + 1
(n c/s 1) (n c/s 0) (n c/s 1) (n c/s 1)
= 1111...1.1000...05 + 1
(n c/s 1) (n-1 c/s 0)
= 1111...1.3.333...35 + 1
(n c/s 1) (n-1 c/s 3)
= 3333...3.333...35 + 1
(n c/s 3)(n-1 c/s 3)
= 3333...3.333...34 + 3333...3 + 1
(n c/s 3) (n-1 c/s 3) (n c/s 3)
= 3333...3.333...34 + 3333...34
(n c/s 3)(n-1 c/s 3) (n-1 c/s 3)
= 3333...342 là số chính phương (đpcm)
(n-1 c/s 3)
Ta có
\(1111...11=\frac{10^{2n}-1}{9}\)
\(44444...44=4.\frac{10^n-1}{9}=\frac{4.10^n-4}{9}\)
\(\Rightarrow A=\frac{10^{2n}-1}{9}+\frac{4.10^n-4}{9}+1\)
\(\Rightarrow A=\frac{10^{2n}-1+4.10^n-4+9}{9}=\frac{10^{2n}+4.10^n+4}{9}\)
\(\Rightarrow A=\frac{\left(10^n+2\right)^2}{3^2}=\left(\frac{10^n+2}{3}\right)^2\)
=> A là số chính phương
Đặt 111...11 (n chữ số 1) là k
Ta có: 111...11 (2n chữ số 1)=k.10^n+k
Vì: 10^n=9k+1
111...11 (2n chữ số 1)=k(9k+1)+k=9k^2+k+k=9k^2+2k
Ta có: 444...44 (n chữ số 4)=4k
vậy a+b+1=9k^2+2k+4k+1=(3k)^2+2.3k.1+1^2=(3k+1)^2
vậy a+b+1 là một số chính phương