Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: A=1/12+1/22+1/32+…+1/n2
Ta thấy: 1/12>1/1.2
1/22>1/2.3
.…………
1/n2>1/n.(n+1)
=>A>1/1.2+1/2.3+…+1/n.(n+1)=1-1/2+1/2-1/3+…+1/n-1/(n+1)
=>A>1-1/(n+1)>1-(n+1)/(n+1)=1-1=0
=>A>0
Ta thấy: 1/22<1/1.2
1/32<1/2.3
.…………
1/n2<1/(n-1).n
=>A<1/12+1/1.2+1/2.3+…+1/(n-1).n=1/12+1-1/2+1/2-1/3+…+1/(n-1)-1/
=>A<1+1-1/(n-1)=2-1/(n-1)<2-(n-1)/(n-1)=2-1=1
=>A<1
=>0<A<1
mà 0 và 1 là 2 số tự nhiên liên tiếp
=>A không phải số tự nhiên.
=>ĐPCM
a: Gọi a=UCLN(n+1;2n+3)
\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
=>n+1/2n+3 là phân số tối giản
b: Gọi d=UCLN(2n+5;4n+8)
\(\Leftrightarrow4n+10-4n-8⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+5 là số lẻ
nên n=1
=>2n+5/4n+8 là phân số tối giản
a,A= { x \(\in\) Z/ -1945 < x \(\le\) 2023}
A = { -1944; -1943; -1942; -1941;... ......;2020; 2021; 2022; 2023}
b, Tổng các phần tử có trong tập hợp A là:
B = -1944 + ( -1943) + (-1942 ) + (-1941) +....+ 2020 + 2021 + 2022 + 2023
Các cặp số đối nhau có trong tổng B là 1944 cặp mà hai số đối nhau có ytoongr bằng 0 vậy tổng B là:
B = 0 x 1944 + 1945 + 1946 +....+ 2020+2021+2022 + 2023
B = 0 + (2023+1945).{ ( 2023 - 1945 ) : 1 + 1} : 2
B = 156736
Bài 2 : CM hai số 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau \(\forall\) n \(\in\) N
Gọi ước chung lớn nhất của 12n + 1 và 30n + 2 là d . Theo bài ra ta có :
\(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
trừ vế cho vế ta được : 60n + 5 - (60n +4) \(⋮\) d
60n + 5 - 60n - 4 \(⋮\) d
1 \(⋮\) d
\(\Rightarrow\) d = 1
Ước chung lớn nhất của 12n + 1 và 30n + 2 là 1
Vậy 12n + 1 và 30n +2 là hai số nguyên tố cùng nhau (đpcm)
mệt quá bà hề