Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trường hợp số chia hết cho 5 tận cùng là 0, thì ab(a+b) chắc chắn tận cùng là 0.
Trường hợp số chia hết cho 5 tận cùng là 5 cũng có nghĩa số đó là số lẻ, nếu một số tận cùng là 5 thì khi nhân với một số chẵn thì nó chia hết cho 10(tận cùng là 0)
Trong trường hợp này nếu số còn lại là số chẵn thì tích của nó với số chia hết cho 5 chia hết cho 10, nếu đó là số lẽ thì tổng của nó với 5 là số chẵn lúc đó tích của nó với 5 cũng sẽ chia hết cho 10.
Vậy....
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Đặt tích: \(\left(16a+17b\right)\left(17a+16b\right)=P\)
\(P=\left[11\left(2a+b\right)-6\left(a-b\right)\right]\cdot\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)
P chia hết cho 11 thì
- Hoặc thừa số thứ nhất \(\left[11\left(2a+b\right)-6\left(a-b\right)\right]\) chia hết cho 11 => (a - b) chia hết cho 11 => Thừa số thứ 2: \(\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)cũng chia hết cho 11. Do đó P chia hết cho 112.
- Và ngược lại, Thừa số thứ 2 chia hết cho 11 ta cũng suy được thừa số thứ 1 cũng chia hết cho 11 và P cũng chia hết cho 112.
Vậy, P luôn có ít nhất 1 ước chính phương (khác 1) là 112. ĐPCM
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
Gỉa sử a chia hết cho 5
ta có ab(a+b)= a.a.b+a.b.b
vì a chia hết cho 5 nên a.a.b và a.b.b chia hết cho 5
=>a.a.b và a.b.b có tận cùng là 5 =>:a.a.b+a.b.b có tận cùng là 0
=>ab(a+b) có tận cùng là 0