K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

Đặt \(a=3k+1;b=3n+2\)

Ta có:\(ab=\left(3k+1\right)\left(3n+2\right)=9kn+6k+3n+2\) chia 3 dư 2

Vậy ab chia 3 dư 2

13 tháng 3 2020

đương nhiên là dư 2 rùi

31 tháng 12 2021

Do a chia cho 5 dư 1 = a = 5.m + 1 ; b chia 5 dư 2 = b = 5.n+2 ( m,n thuộc N* )

Ta có :

\(a.b=\left(5.m+1\right).\left(5.n+2\right)\)

\(=\left(5.m+1\right).5.n+\left(5m+1\right).2\)

\(=25.m.n+5.n+10.m\)chia cho 5 dư 2

Vậy a.b chia cho 5 dư 2

5 tháng 7 2021

a có dạng là 4x+2

b có dạng là 4y+2

\(\left(4x+2\right)\left(4y+2\right)\)

\(16xy+8y+8x+4\)

\(4\left(4xy+2y+2x+1\right)⋮4\)

vậy đáp án \(a\left(dư0\right)\)

4 tháng 8 2020

nếu a và b đều là 2 số tự nhiên có 1 chữ số thì
a là 7/6 dư 1
b là 8 chia 6 dư 2
 

4 tháng 8 2020

a chia 6 dư 1=> a=6n+1
b chia 6 dư 2=>b=6n+2
Do đó ab=(6n+1)(6n+2)=36n2+18n+2
=> ab chia 6 dư 2

19 tháng 1 2019

Chọn D

12 tháng 9 2021

up

u

u

u

u

u

 

 

uuupppppppppppp

Bài 2: 

a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6⋮6\)

b: Ta có: \(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)

\(=n^2-1-n^2+12n-35\)

\(=12n-36⋮12\)

17 tháng 10 2019

Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)

b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)

a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2

Vì 9 ⋮ 3 nên 9qk ⋮ 3

Vì 6 ⋮ 3 nên 6q ⋮ 3

Vì 3⋮ 3 nên 3k ⋮ 3

Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)

17 tháng 6 2019

a chia 7 dư 1 => a=7x+1 ( x thuộc N)

b chia 7 dư 2 => b=7k+2 (k thuộc N)

=>  ab=(7x+1)(7k+2)=49xk+14x+7k+2

vì 49xk; 14x; 7k đều chia hết cho 7

=> tích ab chia 7 dư 2

17 tháng 6 2019

Gọi \(a=3k+1;b=3m+2\)

Ta có:\(ab=\left(3k+1\right)\left(3m+2\right)=9km+6k+3m+2\) chia 3 dư 2.

Vậy....

28 tháng 8 2015

Tưởng có tính chất rồi chứ nhỉ:

a : b dư m

c : b dư n

=> a.c : b dư m.n

Áp dụng tính chất trên ta có:

a.b chia 3 dư 1.2

=> ab chia 3 dư 2

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301