Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
a: Để A là phân số thì n+5<>0
hay n<>-5
b: Để A=-1/2 thì n-1/n+5=-1/2
=>2n-2=-n-5
=>3n=-3
hay n=-1
c: Để A là số nguyên thì \(n-1⋮n+5\)
\(\Leftrightarrow n+5\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{-4;-6;-3;-7;-2;-8;1;-11\right\}\)
a: Để A là số tự nhiên thì 8n+6+187 chia hết cho 4n+3
=>\(4n+3\in\left\{1;-1;11;-11;17;-17;187;-187\right\}\)
mà n>0
nên \(n\in\left\{2;46\right\}\)
c: \(A=\dfrac{8n+6+187}{4n+3}=2+\dfrac{187}{4n+3}\)
Để A rút gọn được thì ƯCLN(8n+193;4n+3)<>1
mà 150<=n<=170
nên \(n\in\left\{156;165;167\right\}\)
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)
+ \(4n+3=11\Leftrightarrow n=2\)
+ \(4n+3=187\Leftrightarrow n=46\)
+ \(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))
Vậy n=2, 46
b) A tối giản khi 187 và 4n+3 có ƯCLN =1
\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)
\(n\ne17m+12\left(m\inℕ\right)\)
c) \(n=156\Rightarrow A=\frac{17}{19}\)
\(n=165\Rightarrow A=\frac{89}{39}\)
\(n=167\Rightarrow A=\frac{139}{61}\)
A =\(\dfrac{n+2}{n+1}\) với n \(\ne\) 3
a, tìm n để A là số nguyên
b, chứng minh A là phân số tối giản
a) Để A là số nguyên thì \(n+2⋮n+1\)
\(\Leftrightarrow n+1+1⋮n+1\)
mà \(n+1⋮n+1\)
nên \(1⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(1\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)(thỏa ĐK)
Vậy: \(n\in\left\{0;-2\right\}\)
b) Gọi d\(\in\)ƯC(n+2;n+1)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮d\\n+1⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(n+2;n+1\right)=1\)
hay A là phân số tối giản(Đpcm)
`a)A in ZZ`
`=>n+1 vdots n-3`
`=>n-3+4 vdots n-3`
`=>4 vdots n-3`
`=>n-3 in Ư(4)={+-1,+-2,+-4}`
`=>n in {2,4,5,1,-1,7}`
Vậy `n in {2,4,5,1,-1,7}` thì `A in ZZ`
b) để A là phân số thì A `cancel{in} Z`
`=>n ne {2,4,5,1,-1,7}`
Vậy `n ne {2,4,5,1,-1,7}` thì A là phân số
a)Để A là số nguyên thì n+1 ⋮ n-3
⇒n+1 ⋮ n−3
⇒n−3+4 ⋮ n−3
⇒4 ⋮ n−3
⇒n-3 ∈ Ư(4)={±1,±2,±4}
⇒n ∈ {2,4,5,1,−1,7}
Vậy n ∈ {2,4,5,1,−1,7} thì A ∈ Z
b) Để A là phân số thì A ∈ Z
⇒n ≠ {2,4,5,1,−1,7}
Vậy n ≠ {2,4,5,1,−1,7} thì A là phân số
Chúc bạn học tốt!
a) Ta có: \(A=\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=\frac{n+1}{n+1}-\frac{6}{n+1}=1-\frac{6}{n+1}\)
Để \(A\in Z\Rightarrow1-\frac{6}{n+1}\in Z\Rightarrow\frac{6}{n+1}\in Z\)
Ta có bảng sau:
n + 1
-6
-3
-2
-1
1
2
3
6
n
-7
-4
-3
-2
0
1
2
5
b) Gọi d là ước chung nguyên tố của cả tử và mẫu ta có:
n - 5 và n + 1 đều chia hết cho d => (n - 5) - (n + 1) = n - 5 - n - 1 = -6 chia hết cho d
=> d = 2 hoặc d = 3
TH1: d = 2 thì n - 5 chia hết cho 2 => n - 1 chia hết cho 2 => n - 1 = 2k => n = 2k + 1
TH2: d = 3 thì n - 5 chia hết cho 3 => n - 2 chia hết cho 3 => n - 2 = 3k => n = 3k + 2
Vậy để A tối giản thì \(n\ne2k+1;n\ne3k+2\)
cảm ơn bạn