Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(k^2>k^2-1=\left(k+1\right)\left(k-1\right)\)
Áp dung vào bài toán ta được
\(A=\frac{1}{2}.\frac{3}{4}...\frac{199}{200}=\frac{1.3...199}{2.4...200}\)
\(\Rightarrow A^2=\frac{1^2.3^2...199^2}{2^2.4^2...200^2}< \frac{1^2.3^2...199^2}{1.3.3.5...199.201}=\frac{1^2.3^2...199^2}{1.3^2.5^2...199^2.201}=\frac{1}{201}\)
Vậy \(A^2< \frac{1}{201}\)
ko biết có đúng ko nhưng cậu xem thử cách này khác kq anh lâm tớ nghĩ chắc sai rồi
A=\(\frac{\text{1.3.5...199}}{\text{2.4.6...200}}\)(1)
A< \(\frac{2}{3}\cdot\frac{4}{5}\cdot....\cdot\frac{200}{201}\)(2)
lấy (1) nhân (2)
=>A2<(\(\frac{\text{1.3.5...199}}{\text{2.4.6...200}}\))(\(\frac{2}{3}\cdot\frac{4}{5}\cdot....\cdot\frac{200}{201}\))
=>A2<\(\frac{1}{201}< \frac{1}{200}\)
Vậy A<\(\frac{1}{201}< \frac{1}{200}\)
\(\frac{199}{200}>\frac{199}{200+201+202}\)
\(\frac{200}{201}>\frac{200}{200+201+202}\)
\(\frac{201}{202}>\frac{201}{200+201+202}\)
=>\(A>B\)
Do \(\frac{199}{200}\)> \(\frac{199}{200+201+202}\), \(\frac{200}{201}\)>\(\frac{200}{200+201+202}\),\(\frac{201}{202}\)>\(\frac{201}{200+201+202}\)nên A>B
\(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}\)
A \(< \frac{199+200+201}{200+201+202}=B\)
\(A< B\)
Ta có: \(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}< \)
\(< \frac{199+200+201}{200+201+202}\)
Vậy A < B
ỦNG HỘ TỚ NHA
=\(\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
=\(\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\cdot\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
=\(\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\cdot0\)
\(=0\)
Kết quả = 0 nhé, nhớ ủng hộ mh, mh đang âm diểm
~ HOK TỐT ~
\(\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
\(=\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\left(\frac{3}{6}-\frac{2}{6}-\frac{1}{6}\right)\)
\(=\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\cdot0\)
\(=0\)
ta có 1/2<2/3 ; 3/4<4/5;5/6<6/7;...;199/200<200/201
suy ra A^2=1/2^2*3/4^2*5/6^2*...*199/200^2<1/2*2/3*3/4*4/5*5/6*6/7*...*199/200/200/201
suy ra A^2<1/201(đpcm)
Ta có:
\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{199}{200}< \frac{200}{201}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)
\(\Rightarrow A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\)
\(\Rightarrow A^2< \left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{200}{201}\right)\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{199}{200}\right)\)
\(\Rightarrow A^2< \frac{1}{201}\left(đpcm\right)\)