Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức ngược dấu rồi.
BĐT \(\Leftrightarrow\left(a+b+c\right)\prod\left(a+b-c\right)\le a^4+b^4+c^4\)
Đặt $\left\{ \begin{array}{l}a + b + c = 2s\\ab + bc + ca = {s^2} + 4Rr + {r^2}\\abc = 4sRr\end{array} \right.$
Bất đẳng thức cần chứng minh quy về:
\(16\,r{s}^{2} \left( R-2\,r \right) +2\,{s}^{2} \left( 5\,{r}^{ 2}+{s}^{2} -16\,Rr\right) +2\,{r}^{2} \left( 16\,{R}^{2}+8\,Rr+{r}^{2}-3\,{s} ^{2} \right) \geqslant 0\)
Đây là điều hiển nhiên.
Giả thiết tương đương:
\(a^4+b^4+c^4+2b^2c^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow a^4+\left(b^2+c^2\right)^2=2a^2\left(b^2+c^2\right)+2b^2c^2\)
\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2=2b^2c^2\)
\(\Leftrightarrow b^2+c^2-a^2=\pm\sqrt{2}bc\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{\pm\sqrt{2}bc}{2bc}=\pm\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}A=45^0\\A=135^0\end{matrix}\right.\)
Bất đẳng thức cần chứng minh tương đương:
\(\left(\dfrac{a^2+b^2}{a+b}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)+\left(\dfrac{b^2+c^2}{b+c}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)+\left(\dfrac{c^2+a^2}{c+a}-\dfrac{a^2+b^2+c^2}{a+b+c}\right)\le0\)
\(\Leftrightarrow\dfrac{a^2c+b^2c-c^2a-bc^2}{\left(a+b\right)\left(a+b+c\right)}+\dfrac{b^2a+c^2a-a^2b-ca^2}{\left(b+c\right)\left(a+b+c\right)}+\dfrac{c^2b+a^2b-b^2c-ab^2}{\left(c+a\right)\left(a+b+c\right)}\le0\)
\(\Leftrightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}+\dfrac{cb\left(c-b\right)+ab\left(a-b\right)}{c+a}\le0\) (1).
Không mất tính tổng quát giả sử \(a\geq b\geq c\).
Ta có \(\left\{{}\begin{matrix}\dfrac{1}{a+b}\le\dfrac{1}{c+a}\\ac\left(a-c\right)+bc\left(b-c\right)\ge0\end{matrix}\right.\Rightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}\le\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{c+a}\);
\(\left\{{}\begin{matrix}\dfrac{1}{b+c}\ge\dfrac{1}{c+a}\\ba\left(b-a\right)+ca\left(c-a\right)\le0\end{matrix}\right.\Rightarrow\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}\le\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{c+a}\).
Từ đó: \(\Leftrightarrow\dfrac{ac\left(a-c\right)+bc\left(b-c\right)}{a+b}+\dfrac{ba\left(b-a\right)+ca\left(c-a\right)}{b+c}+\dfrac{cb\left(c-b\right)+ab\left(a-b\right)}{c+a}\le\dfrac{ac\left(a-c\right)+bc\left(b-c\right)+ba\left(b-a\right)+ca\left(c-a\right)+cb\left(c-b\right)+ab\left(a-b\right)}{c+a}=0\).
Do đó (1) đúng hay bđt ban đầu cũng đúng. Đẳng thức xảy ra khi a = b = c.
Áp dụng BĐT AM-GM ta có:
\(P=\sqrt{\dfrac{2a}{2b+2c-a}}+\sqrt{\dfrac{2b}{2c+2a-b}}+\sqrt{\dfrac{2c}{2a+2b-c}}\)
\(=\dfrac{\sqrt{6}a}{\sqrt{3a\left(2b+2c-a\right)}}+\dfrac{\sqrt{6}b}{\sqrt{3b\left(2c+2a-b\right)}}+\dfrac{\sqrt{6}c}{\sqrt{3c\left(2a+2b-c\right)}}\)
\(\ge\dfrac{\sqrt{6}a}{\dfrac{3a+2b+2c-a}{2}}+\dfrac{\sqrt{6}b}{\dfrac{3b+2c+2a-b}{2}}+\dfrac{\sqrt{6}c}{\dfrac{3c+2a+2b-c}{2}}\)
\(\ge\dfrac{\sqrt{6}a}{a+b+c}+\dfrac{\sqrt{6}b}{a+b+c}+\dfrac{\sqrt{6}c}{a+b+c}\)
\(=\dfrac{\sqrt{6}\left(a+b+c\right)}{a+b+c}=\sqrt{6}\)
a)Có \(b^2+c^2-a^2=cosA.2bc\)
\(S=\dfrac{1}{2}bc.sinA\)\(\Rightarrow4S=2bc.sinA\)
\(\Rightarrow\dfrac{b^2+c^2-a^2}{4S}=\dfrac{cosA.2bc}{2bc.sinA}=cotA\) (dpcm)
b) CM tương tự câu a \(\Rightarrow\dfrac{a^2+c^2-b^2}{4S}=\dfrac{cosB.2ac}{2ac.sinB}=cotB\); \(\dfrac{a^2+b^2-c^2}{4S}=\dfrac{cosC.2ab}{2ab.sinC}=cotC\)
Cộng vế với vế \(\Rightarrow cotA+cotB+cotC=\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+c^2-b^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\)\(=\dfrac{a^2+b^2+c^2}{4S}\) (dpcm)
c) Gọi ma;mb;mc là độ dài các đường trung tuyến kẻ từ đỉnh A;B;C của tam giác ABC
Có \(GA^2+GB^2+GC^2=\dfrac{4}{9}\left(m_a^2+m_b^2+m_b^2\right)\)\(=\dfrac{4}{9}\left[\dfrac{2\left(b^2+c^2\right)-a^2}{4}+\dfrac{2\left(a^2+c^2\right)-b^2}{4}+\dfrac{2\left(b^2+c^2\right)-a^2}{4}\right]\)
\(=\dfrac{4}{9}.\dfrac{3\left(a^2+b^2+c^2\right)}{4}=\dfrac{a^2+b^2+c^2}{3}\) (đpcm)
d) Có \(a\left(b.cosC-c.cosB\right)=ab.cosC-ac.cosB\)
\(=\dfrac{a^2+b^2-c^2}{2}-\dfrac{a^2+c^2-b^2}{2}\)
\(=b^2-c^2\) (dpcm)
BĐT trên bị ngược dấu rồi.
Theo công thức Heron:
\(S=\dfrac{1}{4}\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\).
Do đó ta chỉ cần cm:
\(\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\leq a^2b^2+b^2c^2+c^2a^2\). (1)
Ta có \(\left(1\right)\Leftrightarrow a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\ge0\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2}{2}+\dfrac{\left(b^2-c^2\right)^2}{2}+\dfrac{\left(c^2-a^2\right)^2}{2}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi tam giác đó đều.