K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

a) Vì a, b, c là độ dài 3 cạnh của một tam giác

⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)

⇒ a + c – b > 0 và a + b – c > 0

Ta có: (b – c)2 < a2

⇔ a2 – (b – c)2 > 0

⇔ (a – (b – c))(a + (b – c)) > 0

⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).

Vậy ta có (b – c)2 < a2 (1) (đpcm)

b) Chứng minh tương tự phần a) ta có :

( a – b)2 < c2 (2)

(c – a)2 < b2 (3)

Cộng ba bất đẳng thức (1), (2), (3) ta có:

(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2

⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2

⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2

⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).

30 tháng 3 2017

a)Ta có BĐT tam giác :

\(\left\{{}\begin{matrix}a+b>c\\a+c>b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\end{matrix}\right.\)

\(\Rightarrow\left[a+\left(b+c\right)\right]\left[a-\left(b-c\right)\right]>0\)

\(\Rightarrow a^2-\left(b-c\right)^2>0\Rightarrow a^2>\left(b-c\right)^2\)

b)Áp dụng BĐT ở câu a ta có:

\(a^2+b^2+c^2>\left(b-c\right)^2+\left(a-c\right)^2+\left(a-b\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2>b^2+c^2-2bc+a^2+c^2-2ac+a^2+b^2-2ab\)

\(\Leftrightarrow2ab+2bc+2ca>2a^2+2b^2+2c^2\)

\(\Leftrightarrow ab+bc+ca>a^2+b^2+c^2\)

1 tháng 4 2017

ủa anh ơi bài b) kêu chứng minh là \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\) sao anh lại đi chứng minh \(a^2+b^2+c^2< ab+bc+ca\) ở cuối bài .-.

1 tháng 6 2017

Xét tam thức f(x) = b2x2 - (b2 + c2 - a2)x + c2 có:

Δ = (b2 + c2 - a2)2 - 4b2c2

    = (b2 + c2 - a2 - 2bc)(b2 + c2 - a2 + 2bc)

    = [(b - c)2 - a2][(b + c)2 - a2]

    = (b – c – a)(b – c + a)(b + c + a)(b + c – a).

Do a, b, c là 3 cạnh của tam giác nên theo bất đẳng thức tam giác ta có:

    b < c + a ⇒ b – c – a < 0

    c < a + b ⇒ b – c + a > 0

    a < b + c ⇒ b + c – a > 0

    a, b, c > 0 ⇒ a + b + c > 0

⇒ Δ < 0 ⇒ f(x) cùng dấu với b2 ∀x hay f(x) > 0 ∀x (đpcm).

NV
23 tháng 1 2021

a.

Theo BĐT tam giác: \(c< a+b\Rightarrow c^2< ac+bc\)

\(b< a+c\Rightarrow b^2< ab+bc\) ; \(a< b+c\Rightarrow a^2< ab+ac\)

Cộng vế với vế: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

b.

Do a;b;c là 3 cạnh của tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a>0\\c+a-b>0\end{matrix}\right.\)

\(\left(a+b-c\right)\left(b+c-a\right)\le\dfrac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)

Tương tự: \(\left(b+c-a\right)\left(a+c-b\right)\le c^2\) ; \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)

Nhân vế với vế:

\(\left(abc\right)^2\ge\left[\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\right]^2\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(c+a-b\right)\left(b+c-a\right)\)

13 tháng 5 2016

ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca

<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0

<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0

<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0

<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)

dấu = xảy ra khi a =b=c

 

23 tháng 5 2016

 

a−b<c<=>a2+b2−2ab<c2

b−c<a<=>b2+c2−2bc<a2

a−c<b<=>a2+c2−2ac<b2

Cộng các vế ta có

2(a2+b2+c2)−2(ab+bc+ac)<a2+b2+c2<=>2(ab+ac+bc)>a2+b2+c2 (đpcm)

 
7 tháng 3 2022

mn giúp em với em đang gấp

 

11 tháng 2 2019

a) Áp dụng BĐT tam giác:

b-c<a

\(\Leftrightarrow\left(b-c\right)^2< a^2\)(đpcm).

b) Áp dụng BĐT tam giác:

\(a< b+c\)

\(\Leftrightarrow a^2< ab+ac\)

TTự, có: \(b^2< bc+ab,c^2< ac+bc\)

Cộng 3 BĐT, ta được: \(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

11 tháng 2 2019

BĐT là j ạ

15 tháng 12 2020

\(a\left(c.cosC-b.cosB\right)=a\left(c.\dfrac{a^2+b^2-c^2}{2ab}-b.\dfrac{a^2+c^2-b^2}{2ac}\right)\)

\(=\dfrac{\left(a^2+b^2-c^2\right).c^2}{2bc}-\dfrac{\left(a^2+c^2-b^2\right).b^2}{2bc}\)

\(=\dfrac{b^4-c^4+a^2c^2-a^2b^2}{2bc}\)

\(=\dfrac{\left(b^2-c^2\right)\left(b^2+c^2-a^2\right)}{2bc}=\left(b^2-c^2\right).cosA\)

24 tháng 12 2015

Áp dụng bất đẳng thức tam giác có a+b>c

                                                            <=>ac+bc > c2  (c>0)

<=>a+b
   Tương tự có:ab+cb>b2    ac+ab >a2ab+bc>b2,ac+ab>a2

Cộng các bất đẳng thức trên ra điều phải chứng minh

2(a2+b2+c2)-2(ab+bc+ac)<a2+b2+c2<=>2(a2+b2+c2)>a2+b2+c2 (dpcm)

đúng rồi