K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

Cho a,b,c >0, chứng minh rằng :\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{... - Hoc24

8 tháng 12 2018

Câu hỏi t/tự

NV
7 tháng 2 2022

\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)

\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

8 tháng 2 2022

cảm ơn thầy ạ

25 tháng 5 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=> bc+ac+ab=0

ta có

\(bc+ac=-ab\)

<=> \(\left(bc+ac\right)^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)

tương tự

\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)

\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)

thay vào E ta đc

\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)

=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)

14 tháng 1 2022
Cho sao nha nhưng tui ko bít làm
NV
6 tháng 1 2022

\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)

Tương tự:

\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)

\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)

Cộng vế:

\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)

\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

17 tháng 9 2018

Hình như sai đề :

Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)

\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)

\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )

Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)

\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)

\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )

CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )

Thay ( * ) và ( * ') vào E , ta được :

\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)

\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)

\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)

\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)

\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)

\(=\dfrac{0}{2}=0\)

Vậy \(E=0\)

10 tháng 7 2021

Áp dụng bất đẳng thức Svacxo ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)

Tương tự : \(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c};\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{a+2b}+\dfrac{3}{b+2c}+\dfrac{3}{c+2a}\)

Dấu = xảy ra khi a=b=c

10 tháng 7 2021

\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{9}{a+2b}\)(BĐT Cauchy Schawarz)(1)

tương tự \(=>\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c}\left(2\right)\)

\(=>\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\left(3\right)\)

(1)(2)(3)

\(=>3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

\(=>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\left(dpcm\right)\)

30 tháng 10 2018

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=-\dfrac{1}{c}\)

\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3=-\dfrac{1}{c^3}\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^3+\dfrac{1}{c^3}=0\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{3}{ab}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=0\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{3}{ab}.\left(-\dfrac{1}{c}\right)=0\)

\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}-\dfrac{3}{abc}=0\Leftrightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)

Ta có: Điều cần chứng minh là \(A=3abc\) hay \(\dfrac{A}{3abc}=1\)

Thật vậy:

\(\dfrac{A}{3abc}=\left(\dfrac{b^2c^2}{a}+\dfrac{c^2a^2}{b}+\dfrac{a^2b^2}{c}\right).\dfrac{1}{3abc}\)

\(\dfrac{A}{3abc}=\dfrac{b^2c^2}{3a^2bc}+\dfrac{c^2a^2}{3ab^2c}+\dfrac{a^2b^2}{3abc^2}\)

\(\dfrac{A}{3abc}=\dfrac{bc}{3a^2}+\dfrac{ac}{3b^2}+\dfrac{ab}{3c^2}\)

\(\dfrac{A}{3abc}=\dfrac{abc}{3a^3}+\dfrac{abc}{3b^3}+\dfrac{abc}{3c^3}\)

\(\dfrac{A}{3abc}=\dfrac{abc}{3}\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=\dfrac{abc}{3}.\dfrac{3}{abc}=1\)

\(\dfrac{A}{3abc}=1\Leftrightarrow A=3abc\left(đpcm\right)\)