Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
\(A=a^2+b^2=\left(a+b\right)^2-2ab=3^2-2.\left(-5\right)=19\)
\(B=a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=19^2-2.\left(-5\right)^2=311\)
a. Có a\(^2\) + b\(^2\) = a\(^2\) + 2ab + b\(^2\) - 2ab
\(\Rightarrow\) a\(^2\) + b\(^2\) = ( a + b ) \(^2\) - 2ab (1)
Thay a + b = 10, ab = 5 vào (1 ) ta có :
a\(^2\) + b\(^2\) = 10\(^2\) - 2 . 5 = 90
KL:.............
b. Có ( a + b ) ( a\(^2\) + b\(^2\) ) = a\(^3\) + ab\(^2\) + a\(^2\)b + b\(^3\)
\(\Rightarrow\) ( a + b ) ( a\(^2\) + b\(^2\) ) = a\(^3\) + ab ( a + b ) + b\(^3\) ( 2)
Thay a + b = 10, a\(^2\) + b \(^2\) = 90 ( CMa) , ab = (5) vào (2) ta có :
........................
- a) Ta có: a + b = 5 => a2 + b2 = 25 - 2ab
- Mặt khác: a3 + b3 = 35 => (a + b)( a^2 + b^2 - ab) = 5( 25 - 2ab - ab) = 125 - 15ab = 35
- => ab = 6
Bạn chỉ cần thay vào và làm câu b tương tự là đc nhé ^^
Ta có \(a-b=5\Rightarrow\left(a-b\right)^2=25\Rightarrow a^2+b^2=25+2ab=25+2\cdot2=29\) (Do ab=2)
\(B=3\left[\left(a^2+b^2\right)^2-2a^2b^2\right]+2\left[\left(a-b\right)\left(a^4+b^4+a^3b^2+a^2b^3\right)\right]\)
= \(3\left[29^2-2\cdot4\right]+2\left\{5\left[\left(a^2+b^2\right)^2-2a^2b^2+ab\left(a^2+b^2\right)\right]\right\}\)
= 3\(\cdot833+10\left[29^2-2\cdot4+2\cdot29\right]\) \(=2499+10\cdot891=11409\)