K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

Ta có :

\(A=\frac{10}{a^m}+\frac{10}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)

\(B=\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^m}\)

Cả 2 vế đều có   \(\frac{10}{a^m}+\frac{9}{a^n}\)nên ta so sánh \(\frac{1}{a^n}và\frac{1}{a^m}\)

TH1:
Nếu m>n => a^m>a^n => 1/a^m<1/a^n => B<A
TH2:
Nếu m<n =>a^m<a^n => 1/a^m>1/a^n => B>A
TH3:
Nếu m=n => a^m=a^n => 1.a^m=1/a^n => A=B

9 tháng 6 2015

ta có A=\(\frac{10}{a^m}+\frac{10}{a^n}\)=\(\frac{10}{a^m}+\frac{9}{a^n}+\frac{1}{a^n}\)

B=\(\frac{11}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{1}{a^m}+\frac{9}{a^n}\)

do \(\frac{10}{a^m}+\frac{9}{a^n}=\frac{10}{a^m}+\frac{9}{a^n}\)nên để so sánh A và B ta đi so sánh \(\frac{1}{a^n}\)và \(\frac{1}{a^n}\)

xét 2 trường hợp

th1) m=n => \(\frac{1}{a^m}=\frac{1}{a^n}\)=>A=B

th2) m>n=>\(\frac{1}{a^m}\frac{1}{a^n}\)=>A<B

2 tháng 11 2015

Bạn vào câu hỏi tương tự nha !

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?

21 tháng 5 2015

\(A=\frac{10}{a^m}+\frac{10}{a^n}\)

\(B=\frac{11}{a^m}+\frac{11}{a^n}=\left(\frac{10}{a^m}+\frac{10}{a^n}\right)+\left(\frac{1}{a^m}+\frac{1}{a^n}\right)\)

Vậy A < B

chọn đúng nhé !