Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận dụng dãy số cách đều để giải bài toán này.
Số hạng thứ nhất là 1 chữ số 1, số hạng thứ mười là 10 chữ số 1. Cặp số hạng thứ nhất và thứ mười có 11 chữ số 1.
Số A có tất cả 11 x 5 = 55 chữ số 1. Tổng các chữ số 1 là 55.
55 chia 9 dư bao nhiêu?
BÀI GIẢI
Số A có tổng các chữ số 1 là: (10+1) x 5 = 55.
55 chia 9 được 6 lần và dư 1.
Đáp số: dư 1
Số số 1 ở dãy số trên là :
\(\left(10+1\right)\times5=55\)
\(\Rightarrow\)5 chia 9 dc 6 lần dư 1
Đáp số : dư 1
Để biết một tổng có chia hết cho 9 hay không, ta lấy tổng các chữ số của các số hạng chia cho 9. Số dư của phép chia cũng chính là số dư của tổng đó chia cho 9.
Tổng các chữ số của các số hạng là :
1 + 1 x 2 + 1 x 3 + 1 x 4 + ... + 1 x 9 + 1 x 10 = 1 x ( 1 + 2 + 3 + 4 + ... + 9 + 10) = 1 x 55 = 55
Ta có : 55 : 9 = 6 ( dư 1 )
Vậy A chia cho 9 dư 1.
Đáp số : A chia cho 9 dư 1
tổng các chữ số của mỗi số là: số thứ nhất có tổng các cs =1;s2 có tổng các cs = 2.........................s10 có tổng các chữu số =10
a chia 9 dư...: (1+2+3+4+5+6+7+8+9+10):9=6 dư 1
vậy a chia 9 dư 1
chúc bn hc tốt!
Ta có công thức đếm theo thứ tự dư 1;3;6 rồi lại 1;3;6 cuối cùng ta có tổng đó chia 9 dư 1
tổng các chữ số của A bằng 100 vậy chia 9 dư 1
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Ta có:
\(A=1+11+1111+...+1...111\)
Ta thấy:
\(1+11=12\)
\(1+11+111=123\)
\(1+11+111+1111=1234\)
\(\Rightarrow A=1+11+111+...+1....111=123...0\) (lặp lại \(10:10=1\) là các chữ số \(123...0\))
Tổng các chữ số là:
\(45\times1=45⋮9\)
\(\Rightarrow A⋮9\)
Vậy \(A:9\) dư \(1\)
Sửa lại hàng cuối:
Vậy \(A:9\) dư \(0\)