K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

Gọi 3 STN là a;a+1+a+2 (a\(\in\)N*)

\(\Rightarrow\)Tổng 3 STN là a+(a+1)+(a+2) 

                                 =3a+3\(⋮3\)

Vậy tồn tại 3 STN chia hết cho 3

gọi 5 số bất kì là a1,a2,a3,a4,a5

theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3

TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3

TH2 :chỉ có 2 số có cùng số dư khi chia cho 3 

nếu r=0 thì a1+a3+a5 chia hết cho 3

nếu r=1 thì a3=3k+2 or a3=3k nên a1+a3+a5 chia hết cho 3

tương tự với r=2

1 tháng 3 2020

Gọi 5 số bất kì là a1,a2,a3,a4,a5

Theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3

=> Ta có 2 TH:

+ TH1 : Có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3

+ TH2 : Chỉ có 2 số có cùng số dư khi chia cho 3 

Giả sử a1 ≡ a2 ≡ r(mod3) ; a3 ≡ a4(mod3) ≡ a2 ≡ r(mod3) ; a3 ≡ a4(mod3)

+ Nếu r = 0 thì a1 + a3 + a5 chia hết cho 3

+ Nếu r = 1 thì a3 = 3k+2 hoặc a3 = 3k nên a1 + a3 + a5 chia hết cho 3

Bạn làm tương tự như vậy với TH r = 2 nhé

5 tháng 4 2016

Bài 1

6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp

Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn

Bài 2

5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha

3 tháng 12 2015

vì cứ 3 số tự nhên liên tiế lại có 1 số chia hết cho 3 viết dưới dạng 3a(a>0), 1 số chia 3 dư 1 viết dướng dạng 3a-11 và 1 số chia 3 dư 2 viết dưới dạng 3a-2

vậy ta có tổng 3 số tự nhiên liên tiếp là: 3a+3a-1+3a-2=9a-3 luôn chia hết cho 3

 

2 tháng 3 2018

Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều

nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng

hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.

20 tháng 2 2018

số đó là 333,666,999

8 tháng 4 2021

dễ thấy =))

 

8 tháng 4 2021

giải thích rõ ra chứ bạn ! 

12 tháng 7 2017

Khi chia 1 số tự nhiên cho 3 thì số dư có thể là 0;1;2

=> Khi chia 3 số tự nhiên bất kì cho 3 thì số dư bằng 1 trong 3 số 0;1;2

=> 2 trong 3 số đó có cùng số dư => Tổng, hiệu của 2 trong 3 số chia hết cho 3

12 tháng 7 2017

Gọi 3 số tự nhiên bất kì đó là a;b;c

Khi chia cho 3 thì sẽ đều có dạng:\(3k;3k+1;3k+2\)

Ta có: chọn 2 số tự nhiên bất kì đó có thể là:

\(3k+1+3k+2\)

\(=3k+3k+3=6k+3=3\left(2k+1\right)⋮3\)

Ta có: 2 số tự nhên bất kì nên chúng có thể giống nhau:
\(3k-3k=0⋮3\)

\(\rightarrowđpcm\)