Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{BAM}\) chung
AM=AN
Do đó:ΔABM=ΔACN
Suy ra: BM=CN
Xét ΔQBC vuông tại Q và ΔPCB vuông tại P có
BC chung
\(\widehat{QBC}=\widehat{PCB}\)
Do đó: ΔQBC=ΔPCB
Suy ra: CQ=BP
b: Xét ΔNBC và ΔMCB có
NB=MC
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Xét ΔJBC có \(\widehat{JBC}=\widehat{JCB}\)
nên ΔJBC cân tại J
=>JB=JC
hay J nằm trên đường trung trực của BC(2)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,J thẳng hàng
Ta có: BI là phân giác \(\widehat{ABC}\Rightarrow\widehat{B_1}=\widehat{B_2}\)
CI là phân giác \(\widehat{ACB}\Rightarrow\widehat{C_1}=\widehat{C_2}\)
\(MN//BC\Rightarrow\widehat{I_1}=\widehat{B_2}\),\(\widehat{I_2}=\widehat{C_2}\)
+) Vì \(\widehat{B_1}=\widehat{B_2}\);\(\widehat{I_1}=\widehat{B_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{I_1}\Rightarrow\Delta MBI\)cân tại M
\(\Rightarrow MB=MI\)
+) Vì \(\widehat{C_1}=\widehat{C_2}\);\(\widehat{I_1}=\widehat{C_2}\)
\(\Rightarrow\widehat{C_1}=\widehat{I_2}\Rightarrow\Delta NCI\)Cân tại N
\(\Rightarrow NC=NI\)
Ta có: \(MN=MI+NI\)
mà \(MB=MI\);\(NC=NI\)
\(\Rightarrow MN=MB+NC\left(đpcm\right)\)
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MCB}=\widehat{NBC}\)
BC chung
DO đó: ΔMBC=ΔNCB
Suy ra: MB=NC
Xét ΔPBC vuông tại P và ΔQCB vuông tại Q có
BC chung
\(\widehat{PCB}=\widehat{QBC}\)
Do đó: ΔPBC=ΔQCB
Suy ra: BP=CQ
b: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
Xét ΔJBC có \(\widehat{JBC}=\widehat{JCB}\)
nên ΔJBC cân tại J
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: JB=JC
nên J nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,J thẳng hàng
Nhớ tích cho mình nha giờ mình sẽ giải mà bạn ơi điểm I chính là điểm A đấy ạ!