Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Gọi \(D\left(a;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-9;3\right)\\\overrightarrow{AD}=\left(a-6;-3\right)\end{matrix}\right.\)
Do A; B; D thẳng hàng \(\Leftrightarrow\frac{a-6}{-9}=\frac{-3}{3}\Rightarrow a=15\) \(\Rightarrow D\left(15;0\right)\)
b/ \(\overrightarrow{AB}=\left(-1;5\right);\) \(\overrightarrow{AD}=\left(-2;10\right)\)
\(\Rightarrow\overrightarrow{AD}=2\overrightarrow{AB}\Rightarrow A,B,D\) thẳng hàng
Câu 2:
\(\overrightarrow{AC}=\left(-10;x-4\right)\)
\(\overrightarrow{AB}=\left(-1;1\right)\)
Vì C nằm trên AB nên ta có: \(\dfrac{-10}{-1}=\dfrac{x-4}{1}\)
=>x-4=10
hay x=14
Câu 3:
\(\overrightarrow{AB}=\left(1;2\right)\)
\(\overrightarrow{CD}=\left(-2;-4\right)\)
vì \(\overrightarrow{AB}=\dfrac{-1}{2}\overrightarrow{CD}\)
nên AB//CD
a: vì M nằm trên trục Ox nên M(x;0)
\(\overrightarrow{MA}=\left(x_A-x_M;y_A-y_M\right)=\left(-3-x_M;2\right)\)
\(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(4-x_M;3\right)\)
Ta có: ΔMAB vuông tại M
nên \(\overrightarrow{MA}\cdot\overrightarrow{MB}=0\)
\(\Leftrightarrow\left(-3-x_M\right)\left(4-x_M\right)+6=0\)
\(\Leftrightarrow\left(x_M+3\right)\left(x_M-4\right)+6=0\)
\(\Leftrightarrow x_M^2-x_M-6=0\)
=>xM=3
Ta có: \(\overrightarrow {AD} \left( { - 2;10} \right),{\mkern 1mu} \overrightarrow {AB} \left( { - 1;5} \right) \Rightarrow \overrightarrow {AD} = 2\overrightarrow {AB} \)
\(\Rightarrow\) 3 điểm \(A,B,D\) thẳng hàng.