K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HB
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
1
25 tháng 7 2020
Ta có:
\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(z^2+2zx+x^2\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)+z^2=0\)\(\Leftrightarrow\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2+\left(x+5\right)^2+\left(y+3\right)^2+z^2=0\)
Không tồn tại x,y,z thỏa mãn đề bài
NT
0
TT
0
NL
0
NL
1
NT
0
NL
1
Ta có: \(\left(x^2+y^2+2xy+2yz+2xz\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=3\)
\(\Rightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=3\)
\(\Rightarrow\left(x+y+z\right)^2\le3\)
Dấu "=" xảy ra <=> x=y=z
Do đó \(-\sqrt{3}\le x+y+z\le\sqrt{3}\)
\(\Rightarrow-\sqrt{3}\le A\le\sqrt{3}\)
=> \(\hept{\begin{cases}Min_A=-\sqrt{3}\Leftrightarrow x=y=z=\frac{-\sqrt{3}}{3}\\Max_A=\sqrt{3}\Leftrightarrow x=y=z=\frac{\sqrt{3}}{3}\end{cases}}\)