Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để ý rằng:
\(\frac{4a^2+(b-c)^2}{2a^2+b^2+c^2}=\frac{2(2a^2+b^2+c^2)-2(b^2+c^2)+(b-c)^2}{2a^2+b^2+c^2}=2-\frac{(b+c)^2}{2a^2+b^2+c^2}\)
Biến đổi tương tự với các phân thức còn lại:
\(\Rightarrow \text{VT}=6-\underbrace{\left[\frac{(b+c)^2}{2a^2+b^2+c^2}+\frac{(c+a)^2}{2b^2+a^2+c^2}+\frac{(a+b)^2}{2c^2+a^2+b^2}\right]}_{N}\)
Ta muốn CM \(\text{VT}\geq 3\Leftrightarrow N\leq 3\) . Thật vậy:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{(b+c)^2}{2a^2+b^2+c^2}\leq \frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\). Tương tự như vậy:
\(\left\{\begin{matrix} \frac{(a+c)^2}{2b^2+a^2+c^2}\leq \frac{a^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}\\ \frac{(a+b)^2}{2c^2+a^2+b^2}\leq \frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\end{matrix}\right.\)
Cộng theo vế thu được \(N\leq \frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}=3\)
CM hoàn tất. Dấu bằng xảy ra khi \(a=b=c>0\)
#Akai...: Cho em hỏi, đoạn đầu chị ghi "để ý rằng" khi trình bày ra thì mik ghi như thế nào ạ. Không lẽ lại ghi "để ý rằng"
Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.
Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)
\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*
Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)
Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương
Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)
\(x+y=c+a+4b\); \(y+z=a+b+4c\); \(z+x=b+c+4a\)
Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)
\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)
\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)
Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :
\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)
\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)
Vậy ta có điều phải chứng minh
Ta có \(a^2b^2+b^2c^2+c^2a^2\geq a^2b^2c^2\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\geq 1\)
BĐT cần chứng minh tương đương với \(\frac{\frac{1}{c^3}}{\frac{1}{a^2}+\frac{1}{b^2}}+\frac{\frac{1}{b^3}}{\frac{1}{a^2}+\frac{1}{c^2}}+\frac{\frac{1}{a^3}}{\frac{1}{b^2}+\frac{1}{c^2}}\geq \frac{\sqrt{3}}{2}\)
Đặt \((\frac{1}{a},\frac{1}{b},\frac{1}{c})=(x,y,z)\). Bài toán trở thành:
Cho \(x,y,z>0|x^2+y^2+z^2\geq 1\). CMR \(P=\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\geq \frac{\sqrt{3}}{2}\)
Lời giải:
Áp dụng BĐT Cauchy -Schwarz:
\(P=\frac{x^4}{xy^2+xz^2}+\frac{y^4}{yz^2+yx^2}+\frac{z^4}{zx^2+zy^2}\geq \frac{(x^2+y^2+^2)^2}{x^2(y+z)+y^2(x+z)+z^2(x+y)}\) (1)
Không mất tính tổng quát, giả sử \(x\geq y\geq z\Rightarrow x^2\geq y^2\geq z^2\)
Và \(y+z\leq z+x\leq x+y\). Khi đó, áp dụng BĐT Chebyshev:
\(3[x^2(y+z)+y^2(x+z)+z^2(x+y)]\leq (x^2+y^2+z^2)(y+z+x+z+x+y)\)
\(\Leftrightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)(x+y+z)}{3}\)
Theo hệ quả của BĐT Am-Gm thì: \((x+y+z)^2\leq 3(x^2+y^2+z^2)\Rightarrow x+y+z\leq \sqrt{3(x^2+y^2+z^2)}\)
\(\Rightarrow x^2(y+z)+y^2(x+z)+z^2(x+y)\leq \frac{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}{3}\) (2)
Từ (1),(2) suy ra \(P\geq \frac{3(x^2+y^2+z^2)^2}{2(x^2+y^2+z^2)\sqrt{3(x^2+y^2+z^2)}}=\frac{\sqrt{3(x^2+y^2+z^2)}}{2}\geq \frac{\sqrt{3}}{2}\)
Ta có đpcm
Dáu bằng xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Leftrightarrow a=b=c=\sqrt{3}\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)
Khi đó giả thiết được viết lại là \(x^2+y^2+z^2\ge1\)và ta cần chứng minh \(\frac{x^3}{y^2+z^2}+\frac{y^3}{z^2+x^2}+\frac{z^3}{x^2+y^2}\ge\frac{\sqrt{3}}{2}\)(*)
Áp dụng BĐT Bunhiacopxki dạng phân thức, ta được:
\(VT_{\left(^∗\right)}=\frac{x^4}{x\left(y^2+z^2\right)}+\frac{y^4}{y\left(z^2+x^2\right)}+\frac{z^4}{z\left(x^2+y^2\right)}\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\)
Đến đây ta đi chứng minh \(\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)}\ge\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\)\(\ge\sqrt{3}\left[x\left(y^2+z^2\right)+y\left(z^2+x^2\right)+z\left(x^2+y^2\right)\right]\)
Ta có: \(x\left(y^2+z^2\right)=\frac{1}{\sqrt{2}}\sqrt{2x^2\left(y^2+z^2\right)\left(y^2+z^2\right)}\)\(\le\frac{1}{\sqrt{2}}\sqrt{\left(\frac{2x^2+y^2+z^2+y^2+z^2}{3}\right)^3}\)
\(=\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Tương tự ta có: \(y\left(z^2+x^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
\(z\left(x^2+y^2\right)\le\frac{2\sqrt{3}}{9}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le\frac{2\sqrt{3}}{3}\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
\(\Leftrightarrow\sqrt{3}\text{∑}_{cyc}\left[x\left(y^2+z^2\right)\right]\le2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\)
Cuối cùng ta cần chứng minh được
\(2\left(x^2+y^2+z^2\right)\sqrt{x^2+y^2+z^2}\le2\left(x^2+y^2+z^2\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge1\)(đúng)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\Rightarrow a=b=c=\sqrt{3}\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi