K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

CÓ:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}-\frac{3}{xyz}=-\frac{1}{z^3}\)

\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)

\(A=\frac{yz}{x^2}+\frac{zx}{y^2}+\frac{xy}{z^2}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz\cdot\frac{3}{xyz}=3\)

7 tháng 6 2021

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

22 tháng 9 2020

2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)

lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)

lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\) 

lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)

cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)

22 tháng 9 2020

1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)

8 tháng 2 2019

-cách này khá dài dòng _._ (ko nghĩ đc cách ngắn hơn >: )

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\Leftrightarrow\hept{\begin{cases}-x.\left(y+z\right)=yz\\-y.\left(x+z\right)=xz\\-z.\left(x+y\right)=xy\end{cases}}\)

thay vào biểu thức P, ta có:

\(P=\left[\frac{-z.\left(y+x\right)}{z^2}+\frac{-x.\left(y+z\right)}{x^2}+\frac{-y.\left(x+z\right)}{y^2}-2\right]^{2013}\)

\(P=\left[\frac{-\left(y+x\right)}{z}+\frac{-\left(y+z\right)}{x}+\frac{-\left(x+z\right)}{y}-2\right]^{2013}\)

\(P=\left(\frac{-x^2y-xy^2-zy^2-yz^2-zx^2-xz^2}{xyz}-\frac{2xyz}{xyz}\right)^{2013}\)

\(P=\left[\left(\frac{-x^2y-zx^2}{xyz}\right)+\left(\frac{-xy^2-zy^2}{xyz}\right)+\left(\frac{-z^2y-xz^2}{xyz}\right)\right]\)

\(\text{Ta có: }-x^2y-zx^2=-x^2.\left(y+z\right),\text{mà }-x.\left(y+z\right)=yz\Rightarrow-x^2.\left(y+z\right)=xyz\)

tương tự: \(-xy^2-zy^2=xyz\text{ và }-z^2y-z^2x=xyz\)

\(\Rightarrow P=\left(\frac{3xyz-2xyz}{xyz}\right)^{2013}=1^{2013}=1\)

8 tháng 2 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\Rightarrow x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\) (cách cm   Câu hỏi của Arthur Conan Doyle - Toán lớp 8 - Học toán với OnlineMath)

Vậy\(P=\left(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{zx}{y^2}-2\right)^{2013}=\left(\frac{x^3y^3+y^3z^3+z^3x^3}{x^2y^2z^2}-2\right)^{2013}=\left(3-2\right)^{2013}=1\)

7 tháng 11 2018

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\Rightarrow\frac{x+y+z}{xyz}=0\Rightarrow x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

\(N=\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}=\frac{x^3+y^3+z^3}{xyz}=\frac{3xyz}{xyz}=3\)

22 tháng 9 2020

Ta có : \(x^2-xy=y^2-yz=z^2-zx\)Cộng 3 vế , suy ra :

 \(x^2-xy+y^2-yz+z^2-zx=0\)\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Do \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)

Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}< =>x=y=z}\)

Khi đó ta được : \(M=\frac{x}{z}+\frac{z}{y}+\frac{y}{x}=1+1+1=3\)( do x=y=z )

22 tháng 9 2020

Bạn ơi đề bài cho a khác 0 mà bạn