Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến thì khác nhau nhưng quan trọng là cách làm :))
Vào TKHĐ của tớ để xem hình ảnh nhé, dài ngại chả muốn viết :V
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)
\(\Rightarrow yz=-xy-zx\Rightarrow\dfrac{yz}{x^2+2yz}=\dfrac{yz}{x^2+yz-xy-zx}=\dfrac{yz}{\left(x-y\right)\left(x-z\right)}\)
Tương tự: \(\dfrac{xz}{y^2+2xz}=\dfrac{xz}{\left(y-x\right)\left(y-z\right)}\) ; \(\dfrac{xy}{z^2+2xy}=\dfrac{xy}{\left(x-z\right)\left(y-z\right)}\)
\(\Rightarrow A=\dfrac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}=1\)
Bài này ez thôi, làm mãi rồi.
Theo đề bài, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\)
=>\(\dfrac{xy+yz+xz}{xyz}=0\)
=> xy+yz+zx=0
=> \(\left\{{}\begin{matrix}xy=-yz-zx\\yz=-xy-zx\\zx=-xy-yz\end{matrix}\right.\)
Ta có: x2+2yz=x2+yz-xy-zx=(x-y)(x-z)
y2+2xz=y2+xz-xy-yz=(x-y)(z-y)
z2+2xy=z2+xy-yz-xz=(x-z)(y-z)
=> \(\dfrac{yz}{\left(x-y\right)\left(x-z\right)}+\dfrac{xz}{\left(x-y\right)\left(z-y\right)}+\dfrac{xy}{\left(x-z\right)\left(y-z\right)}=\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\dfrac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)
Lời giải:
\(\frac{x^2+y^2-z^2}{2xy}+\frac{y^2+z^2-x^2}{2yz}+\frac{x^2+z^2-y^2}{2xz}=1\)
\(\Leftrightarrow \frac{x^2+y^2-z^2}{2xy}+1+\frac{y^2+z^2-x^2}{2yz}-1+\frac{x^2+z^2-y^2}{2xz}-1=0\)
\(\Leftrightarrow \frac{(x+y-z)(x+y+z)}{2xy}+\frac{(y-z-x)(y-z+x)}{2yz}+\frac{(x-z-y)(x-z+y)}{2xz}=0\)
\(\Leftrightarrow (x+y-z)\left[\frac{x+y+z}{2xy}+\frac{y-z-x}{2yz}+\frac{x-z-y}{2xz}\right]=0\)
\(\Leftrightarrow (x+y-z)(xz+yz+z^2+xy-zx-x^2+xy-zy-y^2)=0\)
\(\Leftrightarrow (x+y-z)[z^2-(x-y)^2]=0\Leftrightarrow (x+y-z)(z-x+y)(x+z-y)=0\)
Nếu $x+y-z=0$ thì:
\(\frac{x^2+y^2-z^2}{2xy}=\frac{(x+y)^2-z^2-2xy}{2xy}=-1\); \(\frac{y^2+z^2-x^2}{2yz}=\frac{z(y-x)+z^2}{2yz}=\frac{y-x+z}{2y}=\frac{y-x+y+x}{2y}=1\)
\(\frac{x^2+z^2-y^2}{2xz}=1-(-1)-1=1\)
Ta có đpcm.
Các TH còn lại tương tự.
Vậy........