K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022
Qwertyuiopasdfghjklmnbvcxz1234567890@#₫_&-+()/*"':;!?~`|•√π÷׶∆£€$¢^°={}\©%®™✓[]>
1. Cho sáu số nguyên dương đôi một khác nhau và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó có một số bằng tổng hai số còn lại.2. Cho một bảng ô vuông kích thước 5× 5. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả  các tổng đó luôn tồn tại...
Đọc tiếp

1. Cho sáu số nguyên dương đôi một khác nhau và đều nhỏ hơn 10. Chứng minh rằng luôn tìm được ba số trong đó có một số bằng tổng hai số còn 
lại.
2. Cho một bảng ô vuông kích thước 5× 5. Người ta viết vào mỗi ô của bảng một trong các số -1, 0, 1; sau đó tính tổng của các số theo từng cột, theo từng dòng và theo từng đường chéo. Chứng minh rằng trong tất cả  các tổng đó luôn tồn tại hai tổng có giá trị bằng nhau.
3. Có 20 người quyết định đi bơi thuyền bằng 10 chiếc thuyền đôi. Biết rằng nếu 2 người A và B mà không quen nhau thì tổng số những người quen của A và những người quen của B không nhỏ hơn 19. Chứng minh rằng có thể phân công vào các thuyền đôi sao cho mỗi thuyền đều là hai người quen nhau

❤️❤️❤️

1
18 tháng 4 2020

mình không biết

NM
13 tháng 1 2022

gọi \(a_1,a_2...a_{1001}\) là 1001 số nguyên dương đã cho xếp từ bé đến lớn 

nghĩa là \(a_{1001}\) là số nguyên dương lớn nhất.

giả sử không thể chọn ra 3 số mà tổng hai số bất kỳ luôn khác số còn lại 

khi đó ta có : 

\(a_1,a_2,...a_{1001},a_{1001}-a_1;a_{1001}-a_2;....;a_{1001}-a_{1000}\) là 2001 số nguyên dương phân biệt nhỏ hơn 2000

điều này là vô lý vì chỉ có 2000 số nguyên dương bé hơn 2000

vậy giả sử là sai và ta có điều phải chứng minh

13 tháng 1 2022
Tôi không biết Xin lỗi vì đã làm ngài thất vọng 😔😔
28 tháng 6 2015

20^2x có tận cùng là 0

12^2x=144^x;2012^2x=4048144^x

xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4

4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4 

suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)

xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6

4948144^2k=(...6)^k có tận cùng là 6

suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)

từ(1) và (2) suy ra không tồn tại số x

4 tháng 1 2019

Đinh Tuấn việt chép mạng thề luôn!

nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha

Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là

2012^2x = 4048144^x 

Nhưng đề bài lại nói là 2015^2x  cơ mà ??

2 tháng 9 2019

Bạn tham khảo  tại đây:

Câu hỏi của Park Jihoon - Toán lớp 7 - Học toán với OnlineMath

Cách làm là như vậy đó.Bạn tự nghiên cứu nha !