Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 cạnh tam giác là \(a\) ; \(a+d\) ; \(a+2d\) (với \(a>d\))
\(p=\dfrac{3a+3d}{2}\) ; \(r^2=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}=9\)
\(\Rightarrow\left(\dfrac{a+3d}{2}\right)\left(\dfrac{a+d}{2}\right)\left(\dfrac{a-d}{2}\right)=\dfrac{27}{2}\left(a+d\right)\)
\(\Leftrightarrow\left(a+3d\right)\left(a-d\right)=108\)
Do \(\left(a+3d\right)+\left(a-d\right)=2\left(a+d\right)\) chẵn ta chỉ cần xét các cặp ước dương cùng tính chẵn lẻ của 108
TH1: \(\left\{{}\begin{matrix}a+3d=54\\a-d=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=15\\d=13\end{matrix}\right.\)
Ba cạnh là: \(\left(15;28;41\right)\)
TH2: \(\left\{{}\begin{matrix}a+3d=18\\a-d=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=9\\d=3\end{matrix}\right.\)
Ba cạnh là: \(\left(9;12;15\right)\)
Chọn C
Ba cạnh a, b, c ( a < b < c) của một tam giác theo thứ tự đó lập thành một cấp số cộng thỏa mãn yêu cầu thì:
a 2 + b 2 = c 2 a + b + c = 3 a + c = 2 b ⇔ a 2 + b 2 = c 2 3 b = 3 a + c = 2 b ⇔ a 2 + b 2 = c 2 b = 1 a = 2 b − c = 2 − c .
Ta có
a 2 + b 2 = c 2 → a = 2 − c b = 1 2 − c 2 + 1 = c 2
⇔ − 4 c + 5 = 0 ⇔ c = 5 4 ⇒ a = 3 4 b = 1 c = 5 4 .
Chọn đáp án B
A B = a , B C = b ⇒ A M = a 2 - b 2 4
độ dài cạnh BC, trung tuyến AM và độ dài cạnh AB theo thứ tự đó lập thành một cấp số nhân
Chọn C.
Gọi x, y, z theo thứ tự tăng dần của độ dài ba cạnh của tam giác.
Chu vi của tam giác: x + y + z = 3a (1)
Tính chất của cấp số cộng có x + z = 2y (2)
Vì tam giác vuông nên có: x2 + y2 = z2 (3)
Thay (2) vào (1) được 3y = 3a hay y = a, thay y = a vào (2) được: x + z = 2a hay x = 2a - z
Thay x và y vào (3) được: (2a – z)2 + a2 = z2 ⇔ 5a2 – 4az = 0 ⇔
Độ dài ba cạnh của tam giác thỏa yêu cầu:
Vậy độ dài cạnh lớn nhất của tam giác là
Đáp án C
+) Số tam giác được tạo từ 3 đỉnh trong 12 đỉnh: C 12 3
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn đề bài, nên có 12 tam giác
+) Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác: cứ 1 cạnh, trừ đi 2 đỉnh kể, còn 8 đỉnh, với 2 đỉnh đầu mút của cạnh đó cho 1 tam giác thỏa mãn đề bài, nên có 8.12 tam giác
Vậy số tam giác có 3 đỉnh là đỉnh của đa giác và không có cạnh nào là cạnh của đa giác là C 12 3 - 12 - 12 . 8
Vậy kết quả là C 12 3 - 12 - 12 . 8 C 12 3
SỐ tam giác tạo được từ 3 đỉnh là \(C^3_{12}\)
Số tam giác có 3 đỉnh là 3 đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn
=>Có 12 tam giác
Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác
=>CÓ 8*12=96 tam giác
=>\(P=\dfrac{C^3_{12}-12-12\cdot8}{C^3_{12}}\)