Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lim (x-->0) \(\frac{\sqrt[3]{ax+1}-\sqrt{1-bx}}{x}=2\)
<=> lim ( x-->0) \(\left(\frac{\sqrt[3]{ax+1}-1}{x}+\frac{1-\sqrt{1-bx}}{x}\right)=2\)
<=> lim (x-->0)\(\left(\frac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\frac{b}{\sqrt{1-bx}+1}\right)=2\)
<=> \(\frac{a}{3}+\frac{b}{2}=2\)
mà a + 3b = 3
=> a= 3; b = 2
=> A là đáp án sai.
\(a,\) ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)
\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)
__________________________________________________________
\(b,\) với \(x>0\) và \(x\ne1\) . ta có :
\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)
vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)
để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
vậy để \(B=2\) thì \(x=4\)
a.
ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)
\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)
Pt trở thành:
\(729\left(t^4-2t^2+1\right)+8t=36\)
\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)
\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)
b.
ĐKXĐ: ...
\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)
Đặt \(\sqrt{10+4x-x^2}=t\ge0\)
\(\Rightarrow-3t^2-5t+42=0\)
\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{10+4x-x^2}=3\)
\(\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow x=...\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}}+\dfrac{ax}{x}}{\dfrac{bx}{x}-\dfrac{1}{x}}=\dfrac{a-1}{b}=3\)
=> A
Do mẫu số có nghiệm kép \(x=1\) và giới hạn hữu hạn \(\Rightarrow ax+b-2\sqrt{x}=0\) có nghiệm kép \(x=1\)
\(\Rightarrow a+b-2=0\Rightarrow b=2-a\)
\(\Rightarrow ax+2-a-2\sqrt{x}=0\)
\(\Rightarrow a\left(x-1\right)-\dfrac{2\left(x-1\right)}{\sqrt{x}+1}=0\Leftrightarrow\left(x-1\right)\left(a-\dfrac{2}{\sqrt{x}+1}\right)=0\)
\(\Rightarrow a-\dfrac{2}{\sqrt{x}+1}=0\) cũng có nghiệm \(x=1\)
\(\Rightarrow a-\dfrac{2}{1+1}=0\Rightarrow a=1\Rightarrow b=1\)
Thử lại: \(\lim\limits_{x\rightarrow1}\dfrac{x+1-2\sqrt{x}}{\left(x-1\right)^2\left(x+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+2\right)\left(x+1+2\sqrt{x}\right)}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{1}{\left(x+2\right)\left(x+1+2\sqrt{x}\right)}=\dfrac{1}{12}\) (thỏa mãn)