K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Chọn B.

Ta có: 

Phương tích của điểm M  đối với đường tròn (C) tâm I  là:

MI2 - R2 = 10 – 4 = 6

7 tháng 1 2021

Ta có \(\overrightarrow{AB}\left(3,3\right)=>AB=3\sqrt{2}\)

Đường tròn (C) đường kính AB có tâm I \(\left(\dfrac{1}{2},\dfrac{-1}{2}\right)\)là trung điểm AB bán kính R= AB/2 =\(\dfrac{3\sqrt{2}}{2}\)

Suy ra : phương tích của điểm M đối với đường tròn (C) là: MI2-R2=2

7 tháng 1 2021

giúp mk vs các bạn ơi

 

 

NV
24 tháng 12 2020

Gọi \(M\left(x;y\right)\Rightarrow\left(x+3\right)^2+\left(y+4\right)^2=1\)

\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;2-y\right)\\\overrightarrow{MB}=\left(-2-x;1-y\right)\\\overrightarrow{MC}=\left(3-x;4-y\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(2-3x;7-3y\right)\)

\(T^2=\left(3x-2\right)^2+\left(3y-7\right)^2\)

Đặt \(\left(x+3;y+4\right)=\left(a;b\right)\Rightarrow a^2+b^2=1\)

\(T^2=\left(3a-11\right)^2+\left(3b-19\right)^2\)

\(T^2=9\left(a^2+b^2\right)-66a-114b+482=491-6\left(11a+19b\right)\)

Ta lại có:

\(\left(11a+19b\right)^2\le\left(11^2+19^2\right)\left(a^2+b^2\right)=482\)

\(\Rightarrow11a+19b\ge-\sqrt{482}\)

\(\Rightarrow T^2\le491+6\sqrt{482}\)

\(\Rightarrow T\le\sqrt{491+6\sqrt{482}}\)

Số liệu bài toán cho xấu 1 cách phi lý và vô nghĩa

24 tháng 12 2020

Cảm ơn anh rất nhiều ạ

23 tháng 4 2023

a) Để tìm tọa độ tâm và bán kính của đường tròn ©, ta cần viết lại phương trình của nó dưới dạng chuẩn:
\begin{align*}
x^2 + y^2 - 2x + 6y - 2 &= 0 \
\Leftrightarrow (x-1)^2 + (y+3)^2 &= 14
\end{align*}
Vậy, tọa độ tâm của đường tròn © là $(1,-3)$ và bán kính của đường tròn © là $\sqrt{14}$.

b) Đường tròn có tâm $I(4,3)$ và đi qua $A(-4,1)$ có phương trình là:
$$(x-4)^2 + (y-3)^2 = (-4-4)^2 + (1-3)^2 = 20$$

c) Để tìm phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d: 3x+4y-4=0$ tại hai điểm $M$ và $N$ sao cho $MN=6$, ta có thể làm như sau:

Tìm giao điểm $H$ của đường thẳng $d$ và đường vuông góc với $d$ đi qua $I$.Tìm hai điểm $M$ và $N$ trên đường thẳng $d$ sao cho $HM=HN=3$.Xây dựng đường tròn (C') có tâm là $I$ và bán kính bằng $IN=IM=\sqrt{3^2+4^2}=5$.

Để tìm giao điểm $H$, ta cần tìm phương trình của đường thẳng vuông góc với $d$ đi qua $I$. Đường thẳng đó có phương trình là:
$$4x - 3y - 7 = 0$$
Giao điểm $H$ của đường thẳng này và $d$ có tọa độ là $(\frac{52}{25}, \frac{9}{25})$.

Để tìm hai điểm $M$ và $N$, ta có thể sử dụng công thức khoảng cách giữa điểm và đường thẳng. Khoảng cách từ điểm $H$ đến đường thẳng $d$ là:
$$d(H,d) = \frac{|3\cdot \frac{52}{25} + 4\cdot \frac{9}{25} - 4|}{\sqrt{3^2+4^2}} = \frac{1}{5}$$
Vậy, hai điểm $M$ và $N$ cách $H$ một khoảng bằng $\frac{3}{5}$ và $\frac{4}{5}$ đơn vị theo hướng vuông góc với $d$. Ta có thể tính được tọa độ của $M$ và $N$ như sau:
$$M = \left(\frac{52}{25} - \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{3}{5}\cdot 3\right) = \left(\frac{12}{25}, \frac{54}{25}\right)$$

$$N = \left(\frac{52}{25} + \frac{4}{5}\cdot 4, \frac{9}{25} + \frac{4}{5}\cdot 3\right) = \left(\frac{92}{25}, \frac{27}{5}\right)$$
Cuối cùng, phương trình đường tròn (C') có tâm là $I(4,3)$ và cắt đường thẳng $d$ tại hai điểm $M$ và $N$ sao cho $MN=6$ là:
$$(x-4)^2 + (y-3)^2 = 5^2$$

23 tháng 4 2023
23 tháng 4 2023

Tên quen ta :))