Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD và tam giác ACD:
AD chung.
AB = AC (gt).
BD = CD (D là trung điểm của BC).
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-c-c\right).\)
b) Xét tam giác ABC: AB = AC (gt).
\(\Rightarrow\Delta ABC\) cân tại A.
Mà AD là trung tuyến (D là trung điểm của BC).
\(\Rightarrow\) AD là phân giác \(\widehat{BAC}\) (Tính chất tam giác cân).
Xét tam giác MAD và tam giác NAD:
AD chung.
AM = AN (gt).
\(\widehat{MAD}=\widehat{NAD}\) (AD là phân giác \(\widehat{BAC}\)).
\(\Rightarrow\Delta MAD=\Delta NAD\left(c-g-c\right).\)
\(\Rightarrow\) DM = DN (2 cạnh tương ứng).
c) Xét tam giác ADC và tam giác EDB:
DC = DB (D là trung điểm của BC).
AD = ED (gt).
\(\widehat{ADC}=\widehat{EDB}\) (Đối đỉnh).
\(\Rightarrow\Delta ADC=\Delta EDB\left(c-g-c\right).\)
\(\Rightarrow\widehat{CAD}=\widehat{BED}\) (2 góc tương ứng).
\(\Rightarrow\) AC // BE.
Mà \(DK\perp BE\left(gt\right).\)
\(\Rightarrow\) \(DK\perp AC.\left(1\right)\)
Ta có: \(\widehat{AMD}=\widehat{AND}\) \(\left(\Delta MAD=\Delta NAD\right).\)
Mà \(\widehat{AMD}=90^o\left(AM\perp MD\right).\)
\(\Rightarrow\widehat{AND}=90^o.\Rightarrow AC\perp ND.\left(2\right)\)
Từ (1); (2) \(\Rightarrow N;D;K\) thẳng hàng.
a: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
a) Xét ΔABD và ΔMCD có:
AD=MD(gt)
\(\widehat{ADB}=\widehat{CDM}\left(đđ\right)\)
BD=CD(gt)
=> ΔABD=ΔMCD(c.g.c)
b) Đính chính lại đề: CM AB vuông góc vs CM
VÌ: ΔABD=ΔMCD(cmt)
=> \(\widehat{ABD}=\widehat{MCD}\) . Mà hai góc này ở vị trí sole trong
=>AB//CM
c)Xét ΔBDM và ΔCDA có:
DB=DC(gt)
\(\widehat{BDM}=\widehat{CDA}\left(đđ\right)\)
DM=AD(gt)
=>ΔBDM=ΔCDA(c.g.c)
=>\(\widehat{BMD}=\widehat{CAD}\). Mà hai góc này ở vị trí sole trong
=>AC//BM
đọc nhầm đề lm lại từ phần b
b) Vì: ΔABD=ΔMCD(cmt)
=> \(\widehat{ABD}=\widehat{MCD}\) .Mà hai góc này ở vị trid sole trong
=> AB//CM
Mà: \(AB\perp AC\left(gt\right)\)
=> \(AC\perp CM\)
phần c vẫn như ở dưới
a Xét ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xét ΔAHB vuông tại H và ΔMHC vuông tại H có
HA=HM
HB=HC
=>ΔAHB=ΔMHC
=>góc HAB=góc HMC
=>AB//MC và AB=MC=AC
=>ΔMCA cân tại C