K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2020

a, Xét tam giác ABC có:

AC2+AB2=242+182=900=302=BC2AC2+AB2=242+182=900=302=BC2⇒⇒ Tam giác ABC vuông tại A

Xét tam giác ABC và MDC có:

DMCˆ=BACˆDMC^=BAC^

CˆC^ là góc chung

⇒⇒ Tam giác ABC ~MDC ( g.g)

b, Vì tam giác ABC~MDC ⇒ABAC=MDMC=34⇒MD=3MC4⇒ABAC=MDMC=34⇒MD=3MC4ACBC=MCDC=45⇒DC=5MC4ACBC=MCDC=45⇒DC=5MC4

Mà:

ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4ABMD=BCDC=ACMC=AB+BC+ACMD+DC+MC=723MC4+5MC4+4MC4=7212MC3⇒12MC=72.3=216⇒MC=18cm=7212MC3⇒12MC=72.3=216⇒MC=18cm⇒MD=3.184=13,5cm⇒MD=3.184=13,5cm

⇒DC=5.184=22,5cm

Câu 1.a)Giải phương trình sau:lx-3l + lx+2l=7b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số:x^2 - 7x + 14 lớn hơn hoặc bằng 2Câu 2. Giải bài toán bằng cách lập phương trình:Một đội theo thợ mỏ kế hoạch khai thác một lượng than. Họ dự định mỗi ngày khai thác 50 tấn. Do cải tiến kĩ thuật đội đó đã tăng năng suất nên mỗi ngày nên khai thác được 57 tấn than. Vì vậy,...
Đọc tiếp

Câu 1.
a)Giải phương trình sau:
lx-3l + lx+2l=7
b) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục số:
x^2 - 7x + 14 lớn hơn hoặc bằng 2
Câu 2. Giải bài toán bằng cách lập phương trình:
Một đội theo thợ mỏ kế hoạch khai thác một lượng than. Họ dự định mỗi ngày khai thác 50 tấn. Do cải tiến kĩ thuật đội đó đã tăng năng suất nên mỗi ngày nên khai thác được 57 tấn than. Vì vậy, họ không Các hoàn thiện trước kế hoạch một ngày mà còn vượt chỉ tiêu 13 tấn. Tính số than đội đó định khai thác theo kế hoạch.
Câu 3. Cho ABC có AB = 18cm , AC = 24cm , BC = 30cm. Gọi M là trung điểm của BC. Qua M kẻ đường thẳng vuông góc với AB cắt AC, AB lần lượt tạo D và E.
a) Chứng minh rằng: tam giác ABC đồng dạng với tam giác MDC.
b) Tính độ dài các cạnh MDC.
c) Tính độ dài BE , EC.
Câu 4. Cho hình chóp tứ giác đều SABCD ; ABCD là hình vuông cạnh 20cm, cạnh bên 24cm. Tính thể tích hình chóp.

1

https://lazi.vn/edu/exercise/469333/giai-phuong-trinh-sau-lx-3l-lx2l7
Bạn vào đây tham khảo nhé :)
_Minh ngụy_

1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có

góc C chung

=>ΔABC đồng dạng với ΔIEC

b: 

IC=BC/2=15cm

ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC

=>18/IE=30/EC=24/15=8/5

=>IE=11,25cm; EC=18,75cm

1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có

góc C chung

=>ΔABC đồng dạng với ΔIEC

b: 

IC=BC/2=15cm

ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC

=>18/IE=30/EC=24/15=8/5

=>IE=11,25cm; EC=18,75cm

2 tháng 3 2022

a, Ta có:\(AB^2+AC^2=12^2+16^2=400\)(cm)

\(BC^2=20^2=400\)(cm)

\(\Rightarrow AB^2+AC^2=BC^2\)

\(\Rightarrow\Delta ABC\) vuông tại A

Xét Δ DNC và Δ ABC có:

\(\widehat{NDC}=\widehat{BAC}\left(=90^o\right)\)

Chung \(\widehat{C}\)

⇒Δ DNC \(\sim\) Δ ABC (g.g)

b, Ta có: BD=DC=1/2.BC=1/2.20=10(cm)

Δ DNC \(\sim\) Δ ABC (cma)

\(\Rightarrow\dfrac{ND}{AB}=\dfrac{NC}{BC}=\dfrac{DC}{AC}\Rightarrow\dfrac{ND}{12}=\dfrac{NC}{20}=\dfrac{10}{16}\Rightarrow\left\{{}\begin{matrix}ND=7,5\left(cm\right)\\NC=12,5\left(cm\right)\end{matrix}\right.\)

c, Xét Δ DBM và Δ ABC có:

Chung \(\widehat{B}\)

\(\widehat{BDM}=\widehat{BAC}\left(=90^o\right)\)

⇒Δ DBM \(\sim\) Δ ABC(g.g)

\(\Rightarrow\dfrac{MB}{BC}=\dfrac{BD}{AB}\Rightarrow\dfrac{MB}{20}=\dfrac{10}{12}\Rightarrow MB=\dfrac{50}{3}\left(cm\right)\)

Ta có: MD⊥BC, BD=DC ⇒ ΔBDC cân tại M

\(\Rightarrow MB=MC=\dfrac{50}{3}\left(cm\right)\)

Bài 1: 

a: BC=17cm

AH=120/7(cm)

b: Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ

nên AMHN là hình chữ nhật

Suy ra: AH=MN=120/7(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nen \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.a) Tìm các tam giác đồng dạng với tam giác BDH.b).Tính độ dài HD, BHc).Tính độ dài HEBài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:a) BH.BD = BK.BCb)CH.CE = CK.CBc) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung điểm...
Đọc tiếp

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.

a) Tìm các tam giác đồng dạng với tam giác BDH.

b).Tính độ dài HD, BH

c).Tính độ dài HE

Bài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:

a) BH.BD = BK.BC

b)CH.CE = CK.CB

c) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung điểm của BC.Chứng minh: H ; M ; Q thẳng hàng.

Bài 8 :  Cho tam giác ABC cân tại A ; trên BC lấy điểm M , vẽ ME ; MF vuông góc với AC ; A
B.kẻ đường cao CH. Chứng minh:

a) Tam giác BFM đồng dạng với tam giác CEM.

b) Tam giác BHC và tam giác CEM đồng dạng.

c) ME + MF không đổi khi M di động trên BC.

Bài 9:  Cho hình hộp chữ nhật ABCDA’B’C’D’ có AB = 10cm  ; BC = 20 cm  ; AA’  = 15cm.

a)   Tính thể tích hình hộp chữ nhật.

b) Tính độ dài đường chéo AC’ của hình hộp chữ nhật.

Bài 10: Cho hình chóp tứ giác đều S .ABCD có cạnh đáy AB = 10 cm ; cạnh bên SA = 12 cm.

Tính :  a) Đường chéo AC

b) Tính đường cao SO và thể tích hình chóp.

0
19 tháng 5 2016

a) tam giác BAC vuông tại A và tam giác BMN vuong tại M có: góc BAC=góc BMN

=> tam giác BAC đồng dạng tam giác BMN (g-g)

=> BA/BM=BC/BN=> BN=BM.BC/BA=18.20/12=30cm

b) tam giác PAN vuong tại A và tam giác PMC vuong tại M có

góc APN=góc MPC (đối đỉnh)

=> tam giác PAN đồng dạng tam giác PMC (g-g)

=> PA/PM=PN/PC

=> PA.PC=PM.PN (đpcm)

c) xét tam giác BNC có MN và AC là hai đường cao cắt nhau tại P

=> BP là đường cao thứ 3 kẻ từ B

=> BP vuong góc NC (đpcm)

Xét ΔANM và ΔABC có

AN/AB=AM/AC

\(\widehat{NAM}\) chung

Do đó: ΔANM\(\sim\)ΔABC

16 tháng 3 2022

áp dụng định lí nào thế ạ