K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

từ giả thiết dễ thấy p>q>=2

ta có q(q-1)(q+1) chia hết cho q, mà 0<q-1<q<p và p nguyên tố nên q và p-1 không thể chia hết cho p

từ đó, ta có q+1 chia hết cho p

lại có 0<q+1<2q<2p nên q+1=p

nếu q lẻ thì p=q+1 chẵn và p>2 nên p là hợp số, mâu thuẫn

do đó q=2 từ đó ta có p=3 thử lại thấy thỏa mãn

vậy có một cặp số nguyên tối (p;q) thỏa mãn yêu cầu(3;2)

16 tháng 9 2019

Các ban giúp mình nha ! Mình đang cần gấp. Bạn nào giải được thì mình k cho 

11 tháng 2 2019

 Bổ đề : Số chính phương chia 5 chỉ dư 1 và 4 (bạn tự CM)
Ta dễ dàng thấy 5^2p + 2013 chia 5 dư 3 (vế trái chia 5 dư 3)                                                            (1)
Từ bổ đề ta có q^2 chia 5 dư 1 hoặc 4 mà 5^2p^2 chia hết cho 5 nên vế phải chia 5 dư 1 hoặc 4 (2)
Từ (1) (2), ta thấy sự mâu thuẫn
Vậy không có p q nguyên tố thoả mãn đề bài

k nhé

13 tháng 2 2020

Câu hỏi của FFPUBGAOVCFLOL - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo nhé

11 tháng 2 2020

Ta chứng minh a2 với a nguyên chia 5 chỉ có số dư là 0;1;4

Thật vậy: a là số nguyên nên a có 5 dạng

+) Nếu a = 5k thì \(a^2=\left(5k\right)^2=25k^2⋮5\)(dư 0)

+) Nếu a = 5k + 1 thì \(a^2=\left(5k+1\right)^2=25k^2+10k+1\)(chia 5 dư 1)

+) Nếu a = 5k + 2 thì \(a^2=\left(5k+2\right)^2=25k^2+20k+4\)(chia 5 dư 4)

+) Nếu a = 5k + 3 thì \(a^2=\left(5k+3\right)^2=25k^2+30k+9\)(chia 5 dư 4)

+) Nếu a = 5k + 4 thì \(a^2=\left(5k+4\right)^2=25k^2+40k+16\)(chia 5 dư 1)

Vậy ta đã có đpcm.

Áp dụng vào bài toán: \(q^2\)chia 5 chỉ có thể dư 0;1 hoặc 4

Lại có: \(5^{2p^2}\)chia hết cho 5 nên \(5^{2p^2}+q^2\)chia 5 dư 0;1 hoặc 4

Ta có: \(5^{2p}⋮5\)và 2013 chia 5 dư 3 nên \(5^{2p}+2013\)chia 5 dư 3 

Vế trái chia 5 dư 3 , vế phải chia 5 dư 0;1 hoặc 4 nên không có cặp số nguyên tố (p;q) thỏa mãn bài toán