Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G là trọng tâm tam giác ABC => \(\vec{GA}+\vec{GB}+\vec{GC}=\vec{0}\) => \(\vec{GB}+\vec{GC}=-\vec{GA}\) => \(\left|\vec{GB}+\vec{GC}\right|=\left|-\vec{GA}\right|=GA\)
Tam giác ABC vuông tại nên có trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền BC ; Mà G là trong tâm tam giác nên GA = 2/3 . (1/2. BC) = BC/3 = 5
=> \(\left|\vec{GB}+\vec{GC}\right|=5\)
Đáp án A
a) Gọi I là trung điểm BC
Lấy D đối xứng với G qua I => I là trung điểm GD
=> Tứ giác BGCD là hình bình hành
\(\Rightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GD}\\ \Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{GD}\\\Rightarrow \overrightarrow{GA}+\overrightarrow{GD}=0\\ \Rightarrow G\text{ là trung điểm }AD\\ \Rightarrow GI=\frac{1}{2}GD=\frac{1}{2}AG\\ \Rightarrow AG=2GI\\ \Rightarrow\frac{1}{2}AG+AG=AG+GI\\ \Rightarrow\frac{3}{2}AG=AI\\ \Rightarrow AG=\frac{2}{3}AI\)
=> G là trọng tâm \(\Delta ABC\)
\(\text{b) }\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\\ =3\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\\ =3\overrightarrow{MG}+0=3\overrightarrow{MG}\)