K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

câu 1.

P= 2(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2

P= (x+y+x-y)^2-(2y)^2

P=(2x-2y)(2x+2y)

P=4(x^2-y^2)

câu 2.

a, x^3-2x^2-4xy^2+x= x(x^2-2x+1)-4xy^2

                             =x(x-1)^2-4xy^2

                             =x(x-1-2y)(x-1+2y)

b, (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4)(x^2+5x+6)-24

Đặt x^2+5x+4= a

Lúc đó: (x+1)(x+2)(x+3)(x+4)-24= a(a+2)-24

                                              = a^2+2a-24

                                              =a^2+2a+1-25

                                              = (a+1)^2-5^2

                                              = (a+1-5)(a+1+5)

                                              = (a-4)(a+6)

mà ta đặt x^2+5x+4=a => (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4-4)(x^2+5x+4+6)

                                                                         = (x^2+5x)(x^2+5x+10)

câu3. (x+2)^2= 4-x^2

=> (x+2)^2-4+x^2=0

=>. (x+2)^2-(2-x)(2+x)=0

=> (x+2)(x+2-2+x)=0

=> (x+2)2x=0

=> x+2=0 hoặc 2x=0

=> x=-2 hoặc x=0

21 tháng 5 2017

1)P=2(x^2-y^2)+x^2-2xy+y^2+x^2+2xy+y^2-4y^2=2x^2-2y^2+2x^2+2y^2-4y^2=4x^2-4y^2 .                      3) <=> x^2+4x+4-4+x^2=0

<=> 2x^2+4x=0      <=>2x(x+2)=0     <=>2x=0 hay x+2=0      <=>x=0 hay x=-2

21 tháng 5 2017

Câu 3 :

( x + 2 ) 2 = 4 - x 2

\(\Leftrightarrow\) ( x + 2 ) 2 = ( 2 - x ) ( 2 + x )

\(\Leftrightarrow\) ( x + 2 ) 2 - ( 2 - x ) ( 2 + x ) = 0

\(\Leftrightarrow\) ( x + 2 ) ( x + 2 - 2 + x ) = 0

\(\Leftrightarrow\) 2x . ( x + 2 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy phương trình có nghiệm x = 0 hoặc x = -2 .

21 tháng 5 2017

phynit bài này đúng không ạ

9 tháng 9 2021

\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)

Bài 1: 

\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)

\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)

\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)

\(=2x^2+4xy-7y^2\)

NV
26 tháng 3 2023

1.

\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x+4}{x-3}\)

b.

\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)

\(\Rightarrow x=10\) (thỏa mãn)

2.

\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)

26 tháng 3 2023

Em cảm ơn ạ

10 tháng 11 2017

Ta có: x2+y=y2+x

=>x2+y-y2+x=0

=>(x2-y2)-(x-y)=0

=>(x-y)(x+y)-(x-y)=0

=>(x-y)(x+y-1)=0

=>x-y=0 hoặc x+y-1=0

=>x+y=1(TH1 loại do x khác y)

ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)

=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2

=>A=x2-xy+y2+3x3y+3xy3+6x2y2

=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)

=>A=1-3xy+3x2y+3xy2

=>A=1+3xy(-1+a+b)

=>A=1+3xy(-1+1)

=>A=1+3xy.0

=>A=1

Vậy A=1 khi x2+y=y2+x và x khác y.

4 tháng 11 2019

Lê Đức Huy chép sai đề cau đầu kìa!

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

12 tháng 10 2021

Bài 2: 

a: \(3x^2-3xy=3x\left(x-y\right)\)

b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)

d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)

18 tháng 10 2021

ỳtct7ct7c7c7t79tc9

 

19 tháng 7 2018

a) 5xy ( x - y ) - 2x + 2y

= 5xy ( x - y ) - 2 ( x - y )

= ( x - y ) ( 5xy - 2 )

b) 6x-2y-x(y-3x)

= 2 ( y - 3x ) - x ( y - 3x )

= ( y - 3x ( ( 2 - x )

c)  x+ 4x - xy-4y

= x ( x + 4 ) - y ( x + 4 )

( x + 4 ) ( x - y )

d) 3xy + 2z - 6y - xz 

= ( 3xy - 6y ) + ( 2z - xz )

= 3y ( x - 2 ) + z ( x - 2 )

= ( x - 2 ) ( 3y + z )

19 tháng 7 2018

a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)

b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)

c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)

d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)

11)

a,4-9x^2=0

(2-3x)(2+3x)=0

2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3

b,x^2 +x+1/4=0

(x+1/2)^2 =0

x+1/2=0

x=-1/2

c,2x(x-3)+(x-3)=0

(x-3)(2x+1)=0

x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2

d,3x(x-4)-x+4=0

3x(x-4)-(x-4)=0

(x-4)(3x-1)=0

x-4=0=>x=4 hoặc 3x-1=0=>x=1/3

e,x^3-1/9x=0

x(x^2-1/9)=0

x(x+1/3)(x-1/3)=0

x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3

f,(3x-y)^2-(x-y)^2 =0

(3x-y-x+y)(3x-y+x-y)=0

2x(4x-2y)=0

4x(2x-y)=0

x=0hoặc 2x-y=0=>x=y/2