Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm có dạng \(\overline{abcde}\)
Do a chỉ thuộc {1;2} nên ta chia 2 trường hợp
Trường hợp a=2(b<5):
b có 5 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó với trường hợp a=2 ta có: 5.5.4.3=300(cách)
Trường hợp a=1:
b có 6 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó trường hợp a=1 có 6.5.4.3=360(cách)
Từ đó để lập được các số tự nhiên thõa đề có: 300+360=660(cách)
Bạn có thể kiểm tra kỹ lại, trong quá trình làm có thể có sai xót về số nhưng hướng làm thì ổn rồi
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Đáp án A
Gọi số cần tìm là . Số mà chia hết cho thì phải chia hết cho 3 và 5.
Trường hợp 1. Số cần tìm có dạng , để chia hết cho thì a, b, c, d phải thuộc các tập sau
Do đó trong trường hợp này có số.
Đáp án C
Lời giải :
+ Mỗi số có 2 chữ số khác nhau được lập từ 5 chữ số là chỉnh hợp chập 2 của 5
⇒ A 5 2 = 20
20?
2 chữ số?
Chứng minh bằng quy nạp đi em
Em tự kiểm tra với trường hợp n=2
Giả sử BĐT đúng với \(n=k\) hay \(u_k< \dfrac{2u_1+3\left(k-1\right)}{2}\)
Ta cần chứng minh: \(u_{k+1}< \dfrac{2u_1+3k}{2}\) hay \(\dfrac{u_k^3+4u_k}{u_k^2+1}< \dfrac{2u_1+3k}{2}\)
Do \(\dfrac{2u_1+3k}{2}=\dfrac{2u_1+3\left(k-1\right)}{2}+\dfrac{3}{2}>u_k+\dfrac{3}{2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{u_k^3+4u_k}{u_k^2+1}\le u_k+\dfrac{3}{2}\Leftrightarrow\dfrac{3}{2}\left(u_k-1\right)^2\ge0\) (luôn đúng)