Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(M=\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
\(=\frac{1-\left[\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right]}{1-\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right]}\)
\(=\frac{1-\frac{99}{1}}{1-\frac{1}{100}}\)
\(M=\frac{-98}{99}\)
Đặt \(N=\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
\(=\frac{92+\left[\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}\right]}{1-\left[\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}\right]}\)
\(=\frac{92+\frac{92}{100}}{1-\frac{1}{500}}\)
\(=\frac{92+\frac{92}{100}}{\frac{499}{500}}\)
Tự làm tiếp đi!
Bài 1.
b) \(\frac{5+55+555+5555}{9+99+999+9999}\)
= \(\frac{5\left(1+11+111+1111\right)}{9\left(1+11+111+1111\right)}=\frac{5}{9}\)
c) \(39,2\cdot27+39,2\cdot43+78,4\cdot15\)
= \(39,2\cdot27+39,2\cdot43+39,2\cdot2\cdot15\)
= \(39,2\left(27+43+30\right)=39,2\cdot100=3920\)
d) \(\frac{4}{17}\cdot\frac{3}{11}+\frac{8}{11}\cdot\frac{4}{17}-\frac{4}{17}\)
= \(\frac{4}{17}\left(\frac{3}{11}+\frac{8}{11}-1\right)=\frac{4}{17}\cdot0=0\)
Bài 2.
a) \(\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+...+\frac{1}{57\cdot59}\)
= \(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{57}-\frac{1}{59}\)
= \(\frac{1}{5}-\frac{1}{59}=\frac{54}{295}\)
b) \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)-\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)\)
= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}-\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\)
= \(\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
c) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)...\left(1-\frac{1}{2012}\right)\)
= \(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{2011}{2012}=\frac{1}{2012}\)
K = (\(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\))+...+\(\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
\(=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^1+3^2+3^3+3^4\right)\)
\(=120+...+120\)(Có 25 số 120)
\(=25.120\)
\(=300\)
vậy ...
Giup tui voi !!!!!!!!!!!!!!!!!!!!!!!!!!! Mai phai nop roi !!!!!!!!!!!!!!!!!!!