Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(u=\sqrt{x^2+1}\left(u>0\right)\Rightarrow u^2-1=x^2\)
Phương trình trở thành :
\(2u^2+6x-\left(2x+6\right)t=0\)
\(\Rightarrow\Delta_t=\left(2x+6\right)^2-48x=\left(2x-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+6-2x+6}{4}=3\\t=\dfrac{2x+6+2x-6}{4}=x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=3\\\sqrt{x^2+1}=x\end{matrix}\right.\)
đến đây thì ez rồi
c) Ta có :
\(2\sqrt{x^2-4x+5}=2\sqrt{\left(x-2\right)^2+1}\ge2\)
\(\sqrt{\dfrac{1}{4}x^2-x+1+4}=\sqrt{\left(\dfrac{1}{2}x-1\right)^2+4}\ge2\)
\(\Rightarrow2\sqrt{x^2-4x+5}+\sqrt{\dfrac{1}{4}x^2-x+5}\ge4\)
ta lại có: \(-4x^2+16x-12=-4\left(x^2-4x+4\right)+4\le4\)
\(\left\{{}\begin{matrix}VP\ge4\\VT\le4\end{matrix}\right.\)
Dấu bằng xảy ra khi x = 2
vậy x=2 là nghiệm của phương trình
a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với
ĐKXĐ :
- Vế trái \(x \ge \frac{4}{3}\)
- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)
Hai điều kiện trái ngược nhau
Vậy phương trình vô nghiệm .
phương trình \(\Leftrightarrow2x^2\left(x+1003\right)^2+\left(\sqrt{2x+2007}-1\right)^2=0\)
x^4+2006^x^3+1006009x^2=-x+\(\sqrt{2x+2007}\)-1004
x^2(x+1003)^2=-x+2\(\sqrt{2x+2007}\)-1004
2x^2(x+1003)^2=-2x-2007+2\(\sqrt{2x+2007}\)-1 rồi tách hđt 1 vế âm 1 vế dương
\(B=2x-\sqrt{x^2+4x+4}=2x-\sqrt{x^2+2.x.2+2^2}\)
\(=2x-\sqrt{\left(x+2\right)^2}=2x-\left|x+2\right|\) (1)
Nếu \(x+2\ge0\Leftrightarrow x\ge-2\) thì pt (1) trở thành: 2x - x + 2 = x + 2
Nếu x + 2 < 0 <=> x < -2 thì pt (1) trở thành: 2x + x - 2 = 3x - 2
Vậy .......
P/s: Không chắc lắm, mong mọi người góp ý
ơ ? bài này đứa lớp 1 cũng làm được mà ? trong bài kiếm tra có bài này à ?
a + \(2\sqrt{a-\:1}\)= (a - 1) + \(2\sqrt{a-\:1}\)+ 1 = (\(1\:\:+\sqrt{a-1}\))2
Tương tự cho cái còn lại sẽ ra
Ta có
\(\sqrt{-x^2+2x+2}=\sqrt{-x^2+2x-1+3}=\sqrt{-\left(x-1\right)^2+3}\le\sqrt{3}\)
\(\sqrt{-x^2-6x-8}=\sqrt{-x^2-6x-9+1}=\sqrt{-\left(x+3\right)^2+1}\le1\)
\(\Rightarrow\sqrt{-x^2+2x+2}+\sqrt{-x^2-6x-8}\le1+\sqrt{3}\)
Dấu "=" xảy ra khi x-1=0 và x+3=0 nên x=1 và x=-3(VL). Phương trình vô nghiệm