Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △AMB và △AMC có:
AB = AC ( gt)
AM chung
BM = MC (gt)
\(\Rightarrow\) △AMB = △AMC (c.c.c)
b) Ta có : △AMB = △AMC
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\) ( 2 góc tương ứng)
\(\Rightarrow\) AM là tia phân giác của \(\widehat{BAC}\) (ĐPCM)
c) Ta có: \(\widehat{BMA}+\widehat{CMA}=180^o\) ( kề bù)
Mà \(\widehat{BMA}=\widehat{CMA}\) (△AMB = △AMC)
\(\Rightarrow\widehat{BMA}=\widehat{CMA}=\frac{180^o}{2}=90^o\)
\(\Rightarrow\) AM ⊥ BC (ĐPCM)
d) Gọi tia đối của tia AC là tia Ax.
Vì At là tia phân giác \(\widehat{xAB}\)
\(\Rightarrow\widehat{xAt}=\widehat{tAB}\)
Vì △ABC cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Ta có :\(\widehat{xAB}=\widehat{ABC}+\widehat{ACB}\)
\(\Rightarrow\widehat{xAt}+\widehat{tAB}=\widehat{ABC}+\widehat{ABC}\)
\(\Rightarrow2\widehat{tAB}=2\widehat{ABC}\)
\(\Rightarrow\widehat{tAB}=\widehat{ABC}\)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow\)At // BC (ĐPCM)
CÓ:
Xét \(\Delta\)AEC có: \(\widehat{ACE}=180^o-\widehat{AEC}-\widehat{EAC}\)
Xét \(\Delta\)ADB có: \(\widehat{ABD}=180^o-\widehat{ADB}-\widehat{DAB}\)
Mà \(\widehat{AEC}=\widehat{ADB}\left(gt\right);\widehat{EAC}=\widehat{DAB}\left(=\widehat{BAC}\right)\)
=> \(\widehat{ACE}=\widehat{ABD}\)
=> \(2.\widehat{ACE}=2.\widehat{ABD}\)
=> \(\widehat{ABC}=\widehat{ACB}.\)
ta có : tổng ba góc của 1 tam giác bằng 180 độ => góc A = 180 -( b+c) = 180 - 100 = 80
vì tia AD là tia phân giác của góc A nên : góc ADC = góc ADB = 1/2 góc A = 1/2. 80 =40