Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)6x^2y+9xy^2-2-3y=3xy\left(2x+3y\right)-\left(2x+3y\right)=\left(3xy-1\right)\left(2x+3y\right)\)
\(b)x^2-y^2+4-4x=\left(x-2\right)^2-y^2=\left(x+y-2\right)\left(x-y-2\right)\)
\(c)x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+y^2+xy\right)\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(d)4x^2-9y^2+4x+1=\left(2x+1\right)^2-9y^2=\left(2x+3y-1\right)\left(2x-3y+1\right)\)
\(e)x^2-y^2+4x+4=\left(x+2\right)^2-y^2=\left(x+y+2\right)\left(x-y+2\right)\)
b,x2 -y2 +4-4x
=(x2 -4x +4)-y2
=(x-2)2 -y2
=(x-2-y)(x-2+y)
\(\frac{4\left(x-y\right)^5+2\left(x-y\right)^3-\left(x-y\right)^2}{\left(y-x\right)^2}\)
\(=\frac{4\left(x-y\right)^5+2\left(x-y\right)^3-\left(x-y\right)^2}{\left(x-y\right)^2}\)
\(=4\left(x-y\right)^3+2\left(x-y\right)-1\)
Điều kiện
\(x\ne y\)
A=\(-4\left(x-y\right)^3-2\left(x-y\right)+1\)
ta có \(B=x^3+y^3+3xy\)
\(\Rightarrow B=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=3\left(x^2-xy+y^2\right)+3xy\)
\(=3x^2-3xy+3y^2+3xy\)
\(3x^2+3y^2\)
a) phép tính đã cho bằng 24x2y3z2 : (-6x2y2z2) +(-12x3y2z3) : (-6x2y2z2) + 36x2y2z2 : (-6x2y2z2) = -4y+2xz-6. Thế x,y,z vào rồi tính nha
câu b khi nãy mình giải ở dưới rồi :)
x2+y2=x2+2xy+y2-2xy
=(x+y)2-2xy
=32-2.(-2)
=9+4
=13
x3+y3=x3+3x2y+3xy2+y3-3x2y-3xy2
=(x+y)3-3xy.(x+y)
=33-3.(-2).3
=27+18
=45
x4+y4=x4+2x2y2+y4-2x2y2
=(x2+y2)2-2.(xy)2
=132-2.(-2)2
=169-8
=161
x5+y5=x5+x3y2+y5+x2y3-x3y2-x2y3
=x3.(x2+y2)+y3.(x2+y2)-x2y2.(x+y)
=(x2+y2)(x3+y3)-(xy)2.(x+y)
=13.45-(-2)2.3
=585-12
=573
\(\left(x+2\right)\left(x^2+2x-9\right)\)
\(=x^3+2x^2-9x+2x^2+4x-18\)
\(=x^3+4x^2-5x-18\)
\(\left(x^{2y}-6\right)\left(x^2-5\right)\)
\(=x^{4y}-5x^{2y}-6x^2+30\)
\(\left(x+y\right)\left(xy-4+y\right)\)
\(=x^2y-4x+xy+xy^2-4y+y^2\)
câu còn lại tương tự nha
Xem nào...hmm...
\(D=x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left[\left(x+y\right)^2-2xy\right]^2+2.\left(xy\right)^2\)
Thay x + y = 4 , xy = 2 vào ta được ...
\(E=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^3+y^3\right)\)
\(=D\left(x+y\right)-2\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=4D-8\left[\left(x+y\right)^2-3xy\right]\)
Thay lần lượt D ở câu trên, x + y = 4, xy = 3 vào...