Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tính nhanh:
A = 3/1*2 + 3/2*3 + 3/3*4 + ... + 3/399*400
=>3A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/399*400
3A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/399 - 1/400
3A = 1 - 1/400
3A = 400/400 - 1/400
3A = 399/400
A = 399/400 : 3
A = 399/400 . 1/3
A = 133/400.
Có gì ko hiểu bn ib mk nha.^^
\(A=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{399.400}\)
\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)
\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)
\(A=3.\left(1-\frac{1}{400}\right)\)
\(A=3.\frac{399}{400}\)
\(A=\frac{1197}{400}\)
\(B=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{399.400}\)
\(B=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)
\(B=5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)
\(B=5.\left(1-\frac{1}{400}\right)\)
\(B=5.\frac{399}{400}\)
\(B=\frac{399}{80}\)
\(C=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\)
\(C=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\)
\(C=\frac{1}{5}-\frac{1}{151}\)
\(C=\frac{146}{755}\)
\(D=\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{149.151}\)
\(D=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\right)\)
\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\right)\)
\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{151}\right)\)
\(D=\frac{3}{2}.\frac{146}{755}\)
\(D=\frac{219}{755}\)
\(E=\frac{11}{1.3}+\frac{11}{3.5}+\frac{11}{5.7}+...+\frac{11}{99.101}\)
\(E=\frac{11}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(E=\frac{11}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(E=\frac{11}{2}.\left(1-\frac{1}{101}\right)\)
\(E=\frac{11}{2}.\frac{100}{101}\)
\(E=\frac{550}{101}\)
_Chúc bạn học tốt_
Ta có 1/2*3=1/2-1/3;
1/3*4=1/3-1/4
......................(tương tự với các số khác)
1/149*150=1/149-1/150
=>A=1/2-1/3+1/3-1/4+1/4-1/5+...-1/149+1/149-1/150=1/2-1/150
A=75/150-1/150=74/150=37/75
Vậy A= 37/75
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow A=\frac{5}{11}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow B=\frac{1009}{2019}\)
\(\frac{2}{7}C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2017.2019}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}=\frac{2018}{2019}\Rightarrow C=\frac{2018}{2019}:\frac{2}{7}=\frac{7063}{2019}\)
a,
A=1−3−5−7−9−...−97−99a)A=1−3−5−7−9−...−97−99
=1−(3+5+7+...+99)=1−(3+5+7+...+99)
=1−(99+3).[(99−3):2+1]2=1−(99+3).[(99−3):2+1]2
=1−2499=−2498=1−2499=−2498
b)B=1+3−5−7+9+...+97−99b)B=1+3−5−7+9+...+97−99
=(−8)+(−8)+(−8)+...+(−8)+97−99=(−8)+(−8)+(−8)+...+(−8)+97−99
=(−8).12+(−2)=−98=(−8).12+(−2)=−98
c)C=1−3−5+7+9−11−13+15+...+97−99c)C=1−3−5+7+9−11−13+15+...+97−99
=0+0+0+0+0+...+0−99=0+0+0+0+0+...+0−99
=−99
a) A = 1 - 2 + 3 - 4 + ... + 99 - 100
=> A = ( 1 - 2) + ( 3 - 4 ) + ... + ( 99 - 100 )
=> A = ( -1 ) + ( -1 ) + ... + ( -1 )
Vì tổng A có 100 số hạng,2 số hạng tạo thành 1 cặp nên 100 số hạng tạo thành 50 cặp
=> A = ( -1 ) . 50
=> A = -50
b) B = 1 + 3 - 5 - 7 + 9 + 11 - .... - 397 - 399
=> B = ( 1 + 3 - 5 - 7 ) + ( 9 + 11 - 13 - 15 ) + ... + ( 393 + 395 - 397 - 399 )
=> B = ( -8 ) + ( -8 ) + ... + ( -8 )
Vì tổng B có 200 số hạng,4 số hạng tạo thành 1 cặp nên 200 số hạng tạo thành 50 cặp
=> B = ( -8 ) . 50
=> B = -400
c ) C = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + ... + 97 - 98 - 99 + 100
=> C = ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ... + ( 97 - 98 - 99 + 100 )
=> C = 0 + 0 + ... + 0
=> C = 0
A = 1 - 2 + 3 - 4 + ..... + 99- 100
A = ( 1 -2 ) + ( 3 - 4 ) + ..... + ( 99 - 100 ) ( 50 nhóm )
A = 1 + 1 + .... + 1 ( 50 số 1 )
A = 1 . 50
A = 50
Nhiều thế bạn
Đăng từ từ thôi chứ
Đăng nhiều thế này làm sao mà xong kịp được
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400
A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)
A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)
A=3.(1-1/400)
A=3.399/400
A=1197/400