Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp giải bất đẳng thức và cực trị ( dành cho học sinh 8,9) của Nguyễn Văn Dũng-Võ quốc bá cẩn-Trần quốc anh
Nhà xuất bản Đại học quốc gia Hà Nội
quyển màu xanh lá cây bên trên có viền vàng bạn nha! quyển này hay lắm!
Bạn thi HSG cấp tỉnh à?
bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng
Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau
Cs này sợ nó khác. Các dạng bài này Milk ôn hồi tr vào cấp 3 nhưng h vẫn còn giữ lại.
Kiến trúc dạng đề ôn như vầy:
DẠNG I : Rút gọn biểu thức
VD:
A=.......
Sau đó thường sẽ pải thục hiện:
+Rút gọn biểu thức đó
+Chứng minh 0< C<1
+Tính giá trị của x=...
+..
DẠNG II: Giải phương trình-Hệ Phương trình
Trong dạng này thường giải các bài toán về Giải pương trình, hệ phương trình và bất phương trình.\
Chúc hc tốt!
Có j sai cho xl
~LucMilk~
+ Nếu a là số nguyên tố lẻ -> ab là số lẻ
=> ab+ 2011 là số chẵn lớn hơn 2011
-> c là số chẵn lớn hơn 2011
mà c là số chẵn nguyên tố => c không tồn tại
Đ nếu a là số nguyên tố chẵn => a
Khi đó ab+ 2011 (*)
Ta lại có b là nguyên tố => b= 2 hoặc b là số nguyên tố lẻ
. b=2 khi đó 2b+ 2011=22+ 2011
= 2015 là hợp số
-> b=2 là KTM
. b là số nguyên tố lẻ => b=4k + 1; b=4k+ 3 ( K thuộc N*)
Với b=4k+1
Ta có 2b+ 2011= 24k+1+2011
=16k. 2+ 2011
Ta thấy: 16=1(mod3)
=>16k=1(mod3)
=>2.16k=2(mod3)
mà 2011=1(mod3)
=>2:16k+2011=3(mod3)
Tức là 2.16k+2011:3
=>2.16k+2011 là hợp số
Vậy b=4k+1(k thuộc N*) không TM
Với b=4k+3. Thay vào (*)
Ta có: 24k+3+2011
= 24k.23+2011
= 16k=1 (mod3)
mà 8.16k=2 (mod3)
=> 8.16k=2(mod3)
Mà 2011=1(mod3)
=>16k.8+2011 là hợp số
có em chỉ cho chị quyển Pro X luyện thi THPT môn toán 2018 chỉ vớ 699 ngàn đồng