K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

Phương pháp giải bất đẳng thức và cực trị ( dành cho học sinh 8,9) của Nguyễn Văn Dũng-Võ quốc bá cẩn-Trần quốc anh

Nhà xuất bản Đại học quốc gia Hà Nội

quyển màu xanh lá cây bên trên có viền vàng bạn nha! quyển này hay lắm!

Bạn thi HSG cấp tỉnh à?

23 tháng 8 2021

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

23 tháng 8 2021

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

28 tháng 4 2019

Cs này sợ nó khác. Các dạng bài này Milk ôn hồi tr vào cấp 3 nhưng h vẫn còn giữ lại. 

Kiến trúc dạng đề ôn như vầy:

DẠNG I : Rút gọn biểu thức

VD:

A=.......

Sau đó thường sẽ pải thục hiện:

+Rút gọn biểu thức đó

+Chứng minh 0< C<1

+Tính giá trị của x=...

+..

DẠNG  II: Giải phương trình-Hệ Phương trình

Trong dạng này thường giải các bài toán về Giải pương trình, hệ phương trình và bất phương trình.\

Chúc hc tốt!

Có j sai cho xl

~LucMilk~

28 tháng 4 2019

Cảm ơn nhiều ạ

12 tháng 11 2017

hơ....ý bạn là bạn muốn luyện vẽ hình ấy hả?

12 tháng 11 2017

Ừ ý mình là mẹo để vẽ thêm đường phụ

28 tháng 10 2019

+ Nếu a là số nguyên tố lẻ -> ab là số lẻ

=> ab+ 2011 là số chẵn lớn hơn 2011

-> c là số chẵn lớn hơn 2011

mà c là số chẵn nguyên tố => c không tồn tại

Đ nếu a là số nguyên tố chẵn => a

Khi đó ab+ 2011 (*)

Ta lại có b là nguyên tố => b= 2 hoặc b là số nguyên tố lẻ

b=2 khi đó 2b+ 2011=22+ 2011

                                  = 2015 là hợp số

-> b=2 là KTM

. b là số nguyên tố lẻ => b=4k + 1; b=4k+ 3 ( K thuộc N*)

Với b=4k+1 

Ta có 2b+ 2011= 24k+1+2011

=16k2+ 2011

Ta thấy: 16=1(mod3)

=>16k=1(mod3)

=>2.16k=2(mod3)

mà 2011=1(mod3)

=>2:16k+2011=3(mod3)

Tức là 2.16k+2011:3

=>2.16k+2011 là hợp số

Vậy b=4k+1(k thuộc N*) không TM

Với b=4k+3. Thay vào (*)

Ta có: 24k+3+2011

         = 24k.23+2011

         = 16k=1 (mod3)

mà 8.16k=2 (mod3)

=> 8.16k=2(mod3)

Mà 2011=1(mod3)

=>16k.8+2011 là hợp số