Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> A = ( 1 + 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 + 29 ) + .... + ( 296 + 297 + 298 + 299 + 2100 )
=> A = 31 + 25 . ( 1 + 2 + 22 + 23 + 24 ) + .... + 296.( 1 + 2 + 22 + 23 + 24 )
=> A = 31 + 25 . 31 + .... + 296 . 31
=> A = 31 . ( 1 + 25 + 210 + .... + 296 )
Vì 31 chia hết cho 31 nên A chia cho 31 dư 0
\(A=1+\left(2+2^2+2^3+2^4+2^5\right)+....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(A=1+2.31+....+2^{96}.31=31.\left(2+2^6+...+2^{96}\right)+1\)
Chia 31 dư 1
Bài 1 :
a,Có \(AD\) chung , mà \(AB=AC;DB=DC\)
\(\Rightarrow\Delta ABC=\Delta ADC\)
Do đó \(\widehat{ABD}=\widehat{ACD}\)
b,\(AD\) là cạnh chung của 2\(\Delta:\Delta ABD,\Delta ACD\)
\(\Rightarrow AD\) là phân giác của \(\widehat{BAC}\)
Bài 2:
Ta có : \(EF=HG,\widehat{EFO}=\widehat{GHO}\)
Theo TH thứ 2 của 2 tam giác bằng nhau ta có : cạnh - góc - cạnh
\(\Rightarrow OE=OG\)
Bài 3: Có hình ko bn ,mk dựa vào hình lm ko mk lười vẽ hình lắm =(((((((
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101
=(2^101 -1)/2^100 - 100/2^101
=> A = (2^101 -1)/2^99 - 100/2^100
Bạn ơi khó hiểu quá bạn giải chi tiết hơn giúp mình nhé mình sẽ k cho bạn 2 cái nhé
Đặt A=1+2+22+..............+22017
\(\Rightarrow\)2A =2+22+23+.............+22018
\(\Rightarrow\)2A -A = (2+22+23+............+22018) -(1+2+22 +...............+22017)
\(\Rightarrow\)A= 22018 -1
Lại có :A = ( 23 )672 .22 -1 =(7+1)672 .22 -1= ( B(7) +1).22 -1 =22 .B(7) +22-1=22 .B(7)+3
Vây A chia 7 dư 3
mình đang xin cách giải chứ kết quả biết rồi
tham khảo câu hỏi tương tự nha bạn