Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi độ dài quãng đường là x
Thời gian đi là x/120(h)
Thời gian về là x/90(h)
Theo đề, ta có phương trình:
x/90-x/120=2,5
hay x=900
Gọi độ dài quãng đường là x
Thời gian đi là x/120(h)
Thời gian về là x/90(h)
Theo đề, ta có phương trình:
x/90-x/120=2,5
hay x=900
a, Theo định lí Pytago tam giác HBM vuông tại B
\(HM=\sqrt{BH^2+BM^2}=17cm\)
Ta có \(S_{HBM}=\dfrac{1}{2}.BI.HM;S_{HBM}=\dfrac{1}{2}.BH.BM\)
\(\Rightarrow BI=\dfrac{BH.BM}{HM}=\dfrac{120}{17}cm\)
b, Xét tam giác HIB và tam giác HBM có
^H _ chung ; ^HIB = ^HBM = 900
Vậy tam giác HIB ~ tam giác HBM (g.g)
\(\dfrac{HI}{HB}=\dfrac{HB}{HM}\Rightarrow HI=\dfrac{HB^2}{HM}=\dfrac{225}{17}cm\)
c, Xét tam giác MIB và tam giác MBH ta có
^M _ chung
^MIB = ^MBH = 900
Vậy tam giác MIB ~ tam giác MBH (g.g)
\(\dfrac{MB}{MH}=\dfrac{MI}{MB}\Rightarrow MB^2=MI.MH\)
a.
Ta có: MN//BC (gt)
Áp dụng định lý Ta-lét, ta có:
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\Leftrightarrow\dfrac{1,2}{3}=\dfrac{AN}{4}\)
\(\Leftrightarrow3AN=4,8\)
\(\Leftrightarrow AN=1,6cm\)
b.Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{3^2+4^2}=\sqrt{25}=5cm\)
Áp dụng t/c đường phân giác góc A, ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{5}{7}\)
\(\Rightarrow CD=\dfrac{5}{7}.4=\dfrac{20}{7}cm\)
\(\Rightarrow BD=\dfrac{5}{7}.3=\dfrac{15}{7}cm\)