Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
Ta có : \(B=\left|2-4x\right|-2,5\)
\(\Rightarrow B\)nhỏ nhất \(\Leftrightarrow\left|2-4x\right|\)nhỏ nhất
\(\Leftrightarrow\left|2-4x\right|=0\) ( vì \(\left|2-4x\right|\ge0\)với mọi x)
\(\Leftrightarrow2-4x=0\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=0,5\)
Khi đó : \(B=\left|2-4.0,5\right|-2,5=-2,5\)
Vậy \(B_{min}=-2,5\) tại \(x=0,5\)
Tổng các hệ số của đa thức \(A\left(x\right)\) bất kì bằng giá trị của đa thức đó tại \(x=1\).
Thay \(x=1\) vào đa thức \(A\left(x\right)\) ta có:
\(A\left(1\right)=\left(3-4+1\right)^{2004}.\left(3+4+1\right)^{2005}=0\)