K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(\sqrt{ab}=\sqrt{-a}.\sqrt{-b}\) (vì a<0 , b<0)

Áp dụng : \(\sqrt{\left(-25\right).\left(-64\right)}=\sqrt{-\left(-25\right)}.\sqrt{-\left(-64\right)}=\sqrt{25}.\sqrt{64}=5.8=40\)

23 tháng 4 2017

Do a và b âm nên -a và -b dương

Khi đó , ta có: \(\sqrt{a.b}=\sqrt{\left(-a\right)\left(-b\right)}=\sqrt{-a}.\sqrt{-b}\)

Áp dụng , ta có: \(\sqrt{\left(-25\right)\left(-64\right)}=\sqrt{25}.\sqrt{64}=5.8=40\)

a: \(=\sqrt{3a}:\sqrt{b}\)

b: \(=\sqrt{a}:\sqrt{xy}\)

15 tháng 10 2017

Vì a < 0 nên -a > 0 và b < 0 nên -b > 0

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

17 tháng 5 2017

\(\sqrt{25}=5=\sqrt{5^2}\)

31 tháng 8 2018

Đáp án đúng là √(-5)2; √52.

16 tháng 7 2021

a) \(A=\left(1-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+2\right)\)
        \(=\left(\dfrac{2}{2}-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+\dfrac{4}{2}\right)\)
        \(=\dfrac{2-\left(\sqrt{3}-1\right)}{2}:\dfrac{\left(\sqrt{3}-1\right)+4}{2}\)
        \(=\dfrac{3-\sqrt{3}}{2}.\dfrac{2}{\sqrt{3}+3}\)
        \(=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(1+\sqrt{3}\right)}\)
        \(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
        \(=\dfrac{\left(\sqrt{3}-1\right)^2}{2}\)
Vì \(\left\{{}\begin{matrix}\left(\sqrt{3}-1\right)^2>0\\2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(\sqrt{3}-1\right)^2}{2}>0\) hay A>0
=> A có căn bậc 2
Vậy......

b)\(B=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
       \(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\sqrt{5}\right):\dfrac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
       \(=\left(\dfrac{\sqrt{2}\left(3-1\right)}{1-3}-\sqrt{5}\right).\dfrac{5-2}{\sqrt{5}+\sqrt{2}}\)
       \(=\left(-\sqrt{2}-\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
       \(=-\left(\sqrt{2}+\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
       \(=-3\)
Vì -3 < 0 hay B < 0 
=> B không có căn bậc 2
Vậy.....

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:
\(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)

\(\Rightarrow (\sqrt{a}+\sqrt{b}+\sqrt{c})^2=4\)

\(\Leftrightarrow a+b+c+2(\sqrt{ab}+\sqrt{bc}+\sqrt{ac})=4\)

\(\Leftrightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\frac{4-(a+b+c)}{2}=1\)

\(\Rightarrow a+1=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{c})\)

Tương tự:

$b+1=(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})$
$c+1=(\sqrt{c}+\sqrt{a})(\sqrt{c}+\sqrt{b})$

Khi đó:

\(A=\left[\frac{\sqrt{a}}{(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{c})}+\frac{\sqrt{b}}{(\sqrt{b}+\sqrt{a})(\sqrt{b}+\sqrt{c})}+\frac{\sqrt{c}}{(\sqrt{c}+\sqrt{a})(\sqrt{c}+\sqrt{b})}\right]\sqrt{(a+1)(b+1)(c+1)}\)

\(\frac{\sqrt{a}(\sqrt{b}+\sqrt{c})+\sqrt{b}(\sqrt{c}+\sqrt{a})+\sqrt{c}(\sqrt{a}+\sqrt{b})}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})}.\sqrt{(\sqrt{a}+\sqrt{b})^2(\sqrt{b}+\sqrt{c})^2(\sqrt{c}+\sqrt{a})^2}\)

\(=\frac{2(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})}.(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})\)

\(=2(\sqrt{ab}+\sqrt{bc}+\sqrt{ac})=2\)

 

16 tháng 8 2016

Với \(\begin{cases}a< 0\\b< 0\end{cases}\) thì \(\sqrt{\frac{a}{b}}=\sqrt{-a}:\sqrt{-b}\)

Áp dụng \(\sqrt{\frac{-49}{-81}}=\sqrt{-\left(-49\right)}:\sqrt{-\left(-81\right)}=\sqrt{49}:\sqrt{81}=7:9=\frac{7}{9}\)