K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Th1: m=0

=>-2x-1=0

=>x=-1/2

=>NHận

TH2: m<>0

Δ=(-2)^2-4m(m-1)=-4m^2+4m+4

Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0

=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)

b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0

=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)

1) Bạn tự giải

2) Ta có: \(\Delta=4m^2-8m+9>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\) (*)

Mặt khác: \(x_1^2+x_2^2=2018\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)

\(\Rightarrow4m^2-4m+1-2m+4=2018\)

\(\Leftrightarrow4m^2-6m-2013=0\) \(\Leftrightarrow...\)

c)  Từ (*) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\2x_1x_2=2m-4\end{matrix}\right.\) \(\Rightarrow x_1+x_2-2x_1x_2=3\) 

                                         (Không phụ thuộc vào m)

9 tháng 2 2021

- Xét phương trình đề cho có :

\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)

\(=m^2-3m+3\ge\dfrac{3}{4}>0\)

- Phương trình luôn có hai nghiệm phân biệt với mọi m .

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)

27 tháng 4 2020

2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)

Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2

Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )

Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng 

Nếu m > -4 thì  ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)

Ta được : \(-4< m\le\frac{-3}{2}\)

Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)

16 tháng 5 2023

Ptr có `2` nghiệm phân biệt `<=>\Delta' > 0`

      `<=>(m+1)^2-m+2 > 0<=>m^2+2m+1-m+2 > 0`

                   `<=>m^2+m+3 > 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=m-2):}`

                        `<=>{(x_1+x_2=2m+2),(2x_1.x_2=2m-4):}`

              `=>x_1+x_2-2x_1.x_2=6`

16 tháng 5 2023

thanks

20 tháng 5 2019

Trả lời: 

       Sorry, mk ms lớp 7,ko làm đc lớp 9!

20 tháng 5 2019

-Tìm \(\Delta\)để tìm điều kiện cho phương trình có 2 nghiệm

-Tìm tích \(x_1_{ }x_2=\frac{c}{a}\)để tìm đk cho 2 nghiệm khác 0

- Tìm tổng và tích 2 nghiệm theo định lí Vi-ét

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}=\frac{-5}{2}\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{-5}{2}\)

\(\Leftrightarrow\frac{\left(x1+x2\right)^2}{x1x2}=\frac{-1}{2}\)

Thay tích với tổng vào để tính nhé.Mình bận chỉ hướng dẫn ý chính. Có gì sai sót bỏ qua cho