K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

a, 2^x=8^4/16^3 

<=> 2^x = (2^3)^4 / (2^4)^3

<=> 2^x = 2^12 / 2^12

<=> 2^x = 1

<=> 2^x = 2^0

<=> x = 0

Vậy x = 0

3 tháng 8 2019

 b,2^x=2^6/4^3

<=> 2^x = 2^6 / (2^2)^3

<=> 2^x = 2^6 / 2^6

<=> 2^x = 1

<=> 2^x = 2^0

<=> x = 0

Vậy x = 0

16 tháng 10 2021

\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)

a, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)

b, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)

c, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)

d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)

\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)

a) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)

\(\Rightarrow x-1+x+1=19+21\)

\(=2x=40\)

\(\Rightarrow x=20\)

b) \(4.3^{x-1}+2.3^{x+2}=4.3^6+2.3^9\)

\(\Rightarrow x-1+x+2=6+9\)

\(\Rightarrow2x+1=15\)

\(\Rightarrow2x=14\)

\(\Rightarrow x=7\)

b) Ta có: \(5^{x+4}-3\cdot5^{x+3}=2\cdot5^{11}\)

\(\Leftrightarrow2\cdot5^{x+3}=2\cdot5^{11}\)

\(\Leftrightarrow x+3=11\)

hay x=8

c) Ta có: \(2\cdot3^{x+2}+4\cdot3^{x+1}=10\cdot3^6\)

\(\Leftrightarrow18\cdot3^x+12\cdot3^x=10\cdot3^6\)

\(\Leftrightarrow30\cdot3^x=30\cdot3^5\)

Suy ra: x=5

d) Ta có: \(6\cdot8^{x-1}+8^{x+1}=6\cdot8^{19}+8^{21}\)

\(\Leftrightarrow6\cdot\dfrac{8^x}{8}+8^x\cdot8=6\cdot8^{19}+64\cdot8^{19}\)

\(\Leftrightarrow8^x\cdot\dfrac{35}{4}=70\cdot8^{19}\)

\(\Leftrightarrow8^x=8^{20}\)

Suy ra: x=20

16 tháng 5 2022

a.-1,75-(-\(\dfrac{1}{9}\)-2\(\dfrac{1}{8}\))
-1,75-\(\dfrac{1}{9}+\dfrac{17}{8}\)
\(-\dfrac{7}{4}-\dfrac{1}{9}+\dfrac{17}{8}\)
\(\dfrac{-126}{72}-\dfrac{8}{72}+\dfrac{153}{72}\)
=\(\dfrac{19}{72}\)

16 tháng 5 2022

b.\(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)
\(\dfrac{-1}{12}-\dfrac{21}{8}+\dfrac{1}{3}\)
\(\dfrac{-2}{24}-\dfrac{63}{24}+\dfrac{64}{24}\)
=\(\dfrac{-1}{24}\)

22 tháng 1 2018

a, => 2^x = (2^3)^4/(2^4)^3 = 2^12/2^12 = 1 = 2^0

=> x = 0

c, => 4^x = 4^10.(4-3) = 4^10

=> x=10

d, => 2^2.3^x-1 + 2.3^x.9 = 2^2.3^6+2.3^9

=> 2.3^x-1 . (2+3.9) = 2.3^6.(2+3^3)

=> 2.3^x-1 . 27 = 2.3^6 . 27

=> 3^x-1 = 3^6

=> x-1 = 6

=> x = 7

e, => 2^x.(1/3+1/6+2) = 2^11.(2+1/2)

=> 2^x. 5/2 = 2^11. 5/2

=> 2^x = 2^11

=> x = 11

Tk mk nha

23 tháng 1 2018

câu b) chưa có ai làm thì mình làm nốt vậy 

\(\left(-2\right)^2=-4^6-8^5\)

\(\left(-2\right)^x=-4096-32768\)

\(\left(-2\right)^x=-36864\)

\(\Rightarrow x\) sẽ 1 số thập phân nào đó 

28 tháng 8 2021

a,

\(5^{x+4}-3.5^{x+3}=2.5^{11}\)

\(\Rightarrow5^{x+3}\left(5-3\right)=2.5^{11}\)

\(\Rightarrow5^{x+3}2=2.5^{11}\)

\(\Rightarrow5^{x+3}=5^{11}\)

\(\Rightarrow x+3=11\)

\(\Rightarrow x=8\)

28 tháng 8 2021

b, (Check lai xem de sai o dau khong nhe)

\(3.5^{x+2}+4.5^{x+3}=19.5^{10}\)

Dat 5x ra ben ngoai

\(\Rightarrow5^x.5^23+5^x:5^{-3}.4\)

\(\Rightarrow5^x\left(5^2.3+5^{-3}.4\right)\)

\(\Rightarrow5^x\left(5^{-3}.5^5.3+5^{-3}.4\right)\)

\(\Rightarrow5^x[5^{-3}\left(5^53+4\right)\)

\(\Rightarrow5^x[5^{-3}\left(3125.3+4\right)\)

\(\Rightarrow5^x\left(5^{-3}\right).9379\)

=> Khong tim duoc gia tri cua x \(\Rightarrow x\in\varnothing\)