Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
a) (2x)5 : 43 = 815 => 25x = 815.43 = (23)15.(22)3 = 245.26 = 251 => 5x = 51 => x = 10,2
b) (32)x .93 = 2439 => 32x = 2439 : 93 = (35)9 : (32)3 = 345 : 36 = 339 => 2x = 39 => x = 19,5
c) (1/125)3.5x = 255 => 5x = 255 : (1/125)3 = (52)5 : (1/53)3 = 510 : (5-3)3 = 510 : 5-9 = 519 => x = 19
d) 1/81 : 3x = 1/729 => 3x = 1/81 : 1/729 = 1/34.729 = 3-4.36 = 32 => x = 2
e) (5x - 2)4 = 168 = (162)4 = 2564
=> 5x - 2 = -256 ; 256 => 5x = -254 ; 258 => x = -50,8 ; 51,6
P/S : Thay x = 10,2 vào câu a , x = 19,5 vào câu b sẽ thấy điều hư cấu : 210,2 và 919,5.Ko thể tính được giá trị của 2 lũy thừa này.
b) \(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\pm\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\pm\frac{1}{4}.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{4}-\frac{1}{2}\\x=\left(-\frac{1}{4}\right)-\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{4};-\frac{3}{4}\right\}.\)
c) \(\left(3x+2\right)^3=-27\)
\(\Rightarrow\left(3x+2\right)^3=\left(-3\right)^3\)
\(\Rightarrow3x+2=-3\)
\(\Rightarrow3x=\left(-3\right)-2\)
\(\Rightarrow3x=-5\)
\(\Rightarrow x=\left(-5\right):3\)
\(\Rightarrow x=-\frac{5}{3}\)
Vậy \(x=-\frac{5}{3}.\)
Chúc bạn học tốt!
a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)
b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)
=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc \(\frac{1}{2}x-1=-\frac{1}{2}\)
=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1
c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
=> x - 1= 2 => x = 3
d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)
=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)
2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\); \(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)
Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)
b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}
a. (x - 2)2 = 1
<=> (x - 2)2 = 12 = (-1)2
<=> \(\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\begin{cases}x=3\\x=1\end{cases}\)
Vậy x \(\in\){1; 3}.
b. (2x - 1)3 = -8
<=> (2x - 1)3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -2 + 1
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2.
c. (x + 1/2)2 = 1/16
<=> (x + 1/2)2 = (1/4)2 = (-1/4)2
<=> \(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)
Vậy x \(\in\){-1/4; -3/4}.
d. (x - 2)3 = -27
<=> (x - 2)3 = (-3)3
<=> x - 2 = -3
<=> x = -3 + 2
<=> x = -1
Vậy x = -1.
a.\(\left(x-2\right)^2\)=1
<=> x-2=1 hoặc x-2=-1
<=> x= 3 hoặc x=1
b.\(\left(2x-1\right)^3\)=-8
\(\left(2x-1\right)^3\)=\(\left(-2\right)^3\)
2x-1=-2
2x=-1
x=-1/2
c.\(\left(x+\frac{1}{2}\right)^2\)=\(\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2\)=\(\left(\frac{1}{4}\right)^2\)hoặc \(\left(x+\frac{1}{2}\right)^2\)=\(\left(-\frac{1}{4}\right)^2\)
x+\(\frac{1}{2}\)=\(\frac{1}{4}\) hoặc x+\(\frac{1}{2}\)=-\(\frac{1}{4}\)
x=-\(\frac{1}{4}\)hoặc x=-\(\frac{3}{4}\)
d.\(\left(x-2\right)^3\)=-27
\(\left(x-2\right)^3\)=\(\left(-3\right)^3\)
x-2=-3
x=-1
\(8;a,3^2.\frac{1}{243}.81^2.\frac{1}{3^3}\)
\(=\frac{3^2.\left(3^4\right)^2}{243.3^3}\)
\(=\frac{3^2.3^8}{3^5.3^3}\)
\(=\frac{3^{10}}{3^8}=3^2=9\)
\(b,\frac{4.2^5}{2^3.\frac{1}{16}}\)
\(=\frac{2^2.2^5}{2^3.\frac{1}{2^4}}\)
\(=\frac{2^7}{\frac{1}{2}}=2^7.2=2^8\)
a, \(3^2.\frac{1}{243}.81^2.\frac{1}{3}^3\)
\(=3^2.\frac{1}{243}.\left(3^4\right)^2.\frac{1}{27}\)
\(=3^2.\frac{1}{243}.3^8.\frac{1}{27}\)
\(=\frac{3^2.3^8}{243.27}\)
\(=\frac{3^2.3^8}{3^5.3^3}\)
\(=\frac{3^{10}}{3^8}=3^2=9\)
b, \(\left(4.2^5\right):\left(2^3.\frac{1}{16}\right)\)
\(=\left(2^2.2^5\right):\left(8.\frac{1}{16}\right)\)
\(=2^7:\frac{1}{2}\)
\(=2^8\)