Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
b: Ta có: ΔBAD=ΔBED
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
AD=ED
AF=EC
Do đó: ΔADF=ΔEDC
Suy ra: \(\widehat{ADF}=\widehat{EDC}\)
=>\(\widehat{ADF}+\widehat{ADE}=180^0\)
=>E,F,D thẳng hàng
Bài làm
a) Xét tam giác ABD và tam giác EBD
Ta có: BA = BE ( giả thiết )
\(\widehat{ABD}=\widehat{DBE}\)( BD là tia phân giác của góc ABC )
BD là cạnh chung
=> Tam giác ABD = tam giác EBD ( c.g.c )
=> DA = DE ( hai cạnh tương ứng )
Vậy DA = DE
b) Vì tam giác ABD = tam giác EBD
=> Góc BAD = góc BED ( hai góc tương ứng )
Mà góc BAD = 90o
=> BED = 90o
Vậy góc BED = 90o
Câu c) lỗi.
# Chúc bạn học tốt #
a,xét tam giac ABD và tam giac EBD có
BD chung
góc ABD = góc DBE(vì BDlà phân giác của góc ABE)
BA=BE(gt)
Do đó tam giác ABD bằng tam giác EBD(c.g.c)
suy ra DA=DE(2 cạnh tương ứng)
b,vì tam giac ABD=tam giác DBE=>góc a bằng góc BED
mà góc A=90 độ=>Góc BED=90độ
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
Ta có hình vẽ:
a/ Trong tam giác ABC có:
\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=1800 (tổng 3 góc của tam giác)
900 + 600 + \(\widehat{C}\) = 1800
=> \(\widehat{C}\) = 1800 - 900 - 600 = 300
Ta có: \(\widehat{B}\)=600, BD là phân giác góc B
=> \(\widehat{ABD}\)=\(\widehat{EBD}\)=300
b/ Xét tam giác ABD và tam giác EBD có:
BA = BE (GT)
\(\widehat{ABD}\)=\(\widehat{EBD}\) (GT)
BD : cạnh chung
Vậy tam giác ABD = tam giác EBD (c.g.c)
=> DA = DE (2 cạnh tương ứng)
c/ Xét tam giác BAD và tam giác FAD có:
AD: cạnh chung
AB = AF (GT)
\(\widehat{BAD}\)=\(\widehat{FAD}\) = 900
Vậy tam giác BAD = tam giác FAD (c.g.c)
=> tam giác BAD = tam giác FAD = EBD
Trong tam giác ABD có:
\(\widehat{BAD}\)+\(\widehat{ABD}\)+\(\widehat{BDA}\) = 1800
900 + 300 + \(\widehat{BDA}\) = 1800
=> \(\widehat{BDA}\) = 600
Vì tam giác BAD = tam giác FAD = tam giác EBD
nên \(\widehat{FDA}\)=\(\widehat{ADB}\)=\(\widehat{BDE}\)=600 (các góc tương ứng)
Ta có: \(\widehat{FDA}\)+\(\widehat{ADB}\)+\(\widehat{BDE}\)=600+600+600=1800
=> \(\widehat{FDE}\)=1800
hay E,D,F thẳng hàng (đpcm)
a) Xét tam giác ABD và tam giác EBD có:
+ ^ABD = ^EBD (do BD là phân giác ^B).
+ BD chung.
+ AB = BE (gt).
=> Tam giác ABD = Tam giác EBD (c - g - c).
=> DA = DE (2 cạnh tương ứng).
b) Tam giác ABD = Tam giác EBD (cmt).
=> ^BAD = ^BED (2 góc tương ứng).
Mà ^BAD = 90o (gt).
=> ^BED = 90o.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đo: ΔDBF=ΔDEC
c:ΔDBF=ΔDEC
nên góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>E,D,F thẳng hàng
a) Xét ΔADB và ΔEDB có:
BA = BE ( giả thiết )
Góc ABD = EBD ( BD là tia phân giác của góc ABE )
BD cạnh chung.
=> ΔADB = ΔEDB ( c.g.c )
=> DA = DE ( 2 cạnh tương ứng )
b) Vì ΔADB = ΔEDB nên góc DAB = DEB = 90 độ ( 2 góc tương ứng).
Mk vẽ hình ko đc đẹp cho lắm, thông cảm nha!