K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
26 tháng 8 2022
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
b: Xét ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB
nên \(\left\{{}\begin{matrix}AM\cdot AB=AH^2\left(1\right)\\AM\cdot MB=MH^2\end{matrix}\right.\)
Xét ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC
nên \(\left\{{}\begin{matrix}AN\cdot AC=AH^2\left(2\right)\\NA\cdot NC=NH^2\end{matrix}\right.\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
Xét ΔHNM vuông tại H có
\(NM^2=HN^2+HM^2\)
hay \(HB\cdot HC=AM\cdot MB+AN\cdot NC\)