Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác ACE và tam giác ABD có:
A chung
AEC=ADB(=90)
→ACE∼ABD(g−g)
b,ACE∼ABD
→AC/AB=AE/AD
→AD/AB=AE/AC
Xét tam giác ADE và tam giác ABC có:
A chung
AD/AB=AE/AC
→ADE∼ABC(c−g−c)
→AED=ACB
Ta có: DEH=90−AED
HBC=90−DCB
→DEH=HBC (Vì AED=DCB-cmt)
Xét tam giác EHD và tam giác HBC có:
EHD=BHC
DEH=HBC
→EDH∼BCH(g−g)
→HE/HB=HD/HC
hay HE.HC=HB.HD
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔABD\(\sim\)ΔACE(g-g)
b) Xét ΔHEB vuông tại E và ΔHDC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔHEB\(\sim\)ΔHDC(g-g)
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)
hay \(HE\cdot HC=HB\cdot HD\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{BAD}\) chung
Do đó: ΔADB\(\sim\)ΔAEC
b: Xét ΔEHB vuông tại E và ΔDHC vuông tại H có
\(\widehat{EHB}=\widehat{DHC}\)
Do đó: ΔEHB\(\sim\)ΔDHC
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)
hay \(HE\cdot HC=HB\cdot HD\)
c: Xét tứ giác HBKC có
HB//KC
HC//BK
Do đó: HBKC là hình bình hành
Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
hay H,M,K thẳng hàng