K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)

\(\Leftrightarrow\widehat{C}+\widehat{D}=210^0\)

mà \(\widehat{C}-\widehat{D}=20^0\)

nên \(2\cdot\widehat{C}=230^0\)

\(\Leftrightarrow\widehat{C}=115^0\)

\(\Leftrightarrow\widehat{D}=95^0\)

Số đo góc ngoài tại đỉnh C là: \(180^0-115^0=65^0\)

b: Ta có: \(\widehat{C}+\widehat{D}=210^0\)

\(\Leftrightarrow\widehat{D}\cdot\dfrac{7}{4}=210^0\)

\(\Leftrightarrow\widehat{D}=120^0\)

\(\Leftrightarrow\widehat{C}=90^0\)

Số đo góc ngoài tại đỉnh C là: \(180^0-90^0=90^0\)

12 tháng 9 2021

tổng 2 góc d và c  là

360-90-60=210 a, nếu c-d=20 thì 

C= ( 210+20) : 2= 115o

D= 210-115=95o

b, nếu C= 3/4 D thì

C= 3/4+3 ( C+D)

C= 3/7 210=90o

D= 90: 3/4=120o

a) Ta thấy : A + B + C + D = 360°

Tự áp dụng tính chất dãy tỉ số bằng nhau ta có : 

A = 144° 

B = 108° 

C = 72° 

D = 36° 

b) Vì DE , CE là phân giác ADC và ACD 

=> EDC = ADE = 18° 

=> BCE = ECD = 36° 

Xét ∆DEC ta có : 

EDC + DEC + ECD = 180° 

=> DEC = 126° 

Ta có : góc ngoài tại đỉnh C

=> 180° -  BCD = 108° 

Góc ngoài tại đỉnh D 

=> 180° - ADC = 144° 

Mà DF , CF là phân giác ngoài góc C , D 

=> CDF = 72° 

=> DCF = 54° 

Xét ∆CDF ta có : 

CDF + DFC + DCF = 180° 

=> DFC = 44° 

12 tháng 9 2018

a) Sử dụng tính chất dãy tỉ số bằng nhau.   A ^ = 144 0 ,    B ^ = 108 0 ,   C ^ = 72 0 ,    D ^ = 36 0

b) Sử dụng tổng ba góc trong tam giác tính được C E D ^ = 126 0 .

Chú ý hai phân giác trong và ngoài tại mỗi  góc của một tam giác thì vuông góc nhau, cùng với tổng bốn góc trong tứ giác, ta tính được  C F D ^ = 54 0

28 tháng 8 2020

Bài 1 :                                                   Bài giải

Ta có : \(\widehat{A}-\widehat{B}=10^o\text{ }\Rightarrow\text{ }\widehat{A}=\widehat{B}+10^o\)

Trong tứ giác ABCD có : 

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\widehat{B}+10+\widehat{B}+60^o+80^o=360^o\)

\(2\widehat{B}+150^o=360^o\)

\(2\widehat{B}=110^o\)

\(\widehat{B}=55^o\text{ }\Rightarrow\text{ }\widehat{A}=65^o\)

25 tháng 7 2018

1. Áp dụng định lý  tổng 3 góc vào tam giác ICD , bạn tính được góc ICD +góc IDC = 75 độ

Mà góc BCD = 2 góc ICD và góc ADC = 2 góc IDC nên góc BCD + góc ADC = 2.75 = 150 độ

Xét tứ giác ABCD có: góc A + góc B + góc BCD + góc ADC = 360 độ

                                 góc A + 90 độ + 150 độ = 360 độ

                                 góc A = 120 độ

2. góc C của tứ giác là: 180 độ -130 độ = 50 độ

Chúc bạn học tốt.