K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
a) Xét tgiac OAI và OBI có:
+ OI chung
+ góc AOI = BOI
=> tgiac OAI = OBI (ch-gn) (1)
=> IA=IB (2 cạnh tương ứng)
=> đpcm
b) Áp dụng định lý Pitago cho tgiac AOI vuông tại A
=> OA2 = OI2 - IA2 = 100 - 36 = 64
=> OA = 8
(1) => OA = OB (2 cạnh t/ứng)
=> OB = 6cm.
c) Xét tgiac AKI và BMI có:
+ góc AIK = BIM (đối đỉnh)
+ AI = BI (từ (1))
=>> tgiac AKI = BMI (cgv-gn)
=> AK = BM (2 cạnh t/ứng)
d) Ta có OA = OB và AK = BM (cmt)
=> OA + AK = OB + BM
=> OK = OM
=> Tgiac OKM cân tại A (2)
Ta có: I thuộc OC, K thuộc Ox, M thuộc Oy
Mà OI là tia pgiac góc xOy
=> OC là tgiac góc KOM (3)
(2), (3) => OC là đường cao tgiac OKM
=> OC vuông góc MK (đpcm)
Bạn sifdksfdkjlsjlfkdjdkfsi làm tương đối đúng nhưng :
- Phần b làm ngắn vậy sẽ gây khó hiểu, mình xin phép sửa lại :
b) Xét tam giác OAI vuông tại A có :
OA2 + AI2 = OI2 (ĐL pi-ta-go)
Mà AI = 6cm (GT), OI = 10cm (GT)
=> OA2 + 62 = 102
=> OA2 + 36 = 100
=> OA2 = 100 - 36
=> OA2 = 64
=> OA2 = \(\sqrt{64}\)
=> OA = 8cm
Mà OA = OB (tương ứng)
=> OB = 8cm (đpcm)
- Phần c thì mình không nghĩ chứng minh 2 tam giác vuông mà lại có cách cm theo trường hợp cgv - gn (nếu có thật thì mình xin lỗi), thay vào đó thì cm theo g.c.g bằng 3 yếu tố : góc KAI = góc MBI = 90o, AI = BI (tương ứng), góc AIK = góc MIB (đối đỉnh).
- Phần d thì rối ghê đấy, tam giác OKM không thể nào cân tại A được, nên cm tam giác OKC = tam giác OMC rồi suy ra góc OCK = góc OCM => OC vuông góc với MK (đpcm).