K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2020

Sửa lại ạ!

a) \(\left(3x-1\right)^2-16\)

\(=\left(3x-1\right)^2-4^2\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x-5\right)\left(3x+3\right)\)

b) \(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4\right)^2-\left(7x\right)^2\)

\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)

\(=\left(-4-2x\right)\left(-4+12x\right)\)

c) \(\left(2x+5\right)^2-\left(x-9\right)^2\)

\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)

\(=\left(x+14\right)\left(3x-4\right)\)

d) \(\left(3x+1\right)^2-4\left(x-2\right)^2\)

\(=\left(3x+1\right)^2-\left[2\left(x-2\right)\right]^2\)

\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)

\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)

\(=\left(x+5\right)\left(5x-3\right)\)

e) \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)

\(=\left[3\left(2x+3\right)\right]^2-\left[2\left(x+1\right)\right]^2\)

\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)

\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)

\(=\left(4x+7\right)\left(8x+11\right)\)

P/s: Ko chắc!

Thu gọn chưa hết kìa bạn ơi

21 tháng 8 2017

a)\(\left(3x-1\right)^2-16=\left(3x-1-16\right)\left(3x-1+16\right)\)

                                     \(=\left(3x-17\right)\left(3x+15\right)\)

c)\(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5+x-9\right)\left(2x+5-x+9\right)\)

                                                 \(=\left(x-4\right)\left(x+14\right)\)

      Aps dungj t/c a2 - b2 = ( a-b)(a+b)

a) Ta có: \(\left(3x-1\right)^2-16\)

\(=\left(3x-1-4\right)\left(3x-1+4\right)\)

\(=\left(3x-5\right)\left(3x+3\right)\)

\(=3\left(x+1\right)\left(3x-5\right)\)

b) Ta có: \(\left(5x-4\right)^2-49x^2\)

\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)

\(=\left(-2x-4\right)\left(12x-4\right)\)

\(=-2\left(x+2\right)\cdot4\cdot\left(3x-1\right)\)

\(=-8\left(x+2\right)\left(3x-1\right)\)

c) Ta có: \(\left(2x+5\right)^2-\left(x-9\right)^2\)

\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)

\(=\left(x+14\right)\left(3x-4\right)\)

d) Ta có: \(\left(3x+1\right)^2-4\left(x-2\right)^2\)

\(=\left(3x+1\right)^2-\left(2x-4\right)^2\)

\(=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\)

\(=\left(x+5\right)\left(5x-3\right)\)

e) Ta có: \(9\left(2x+3\right)^2-4\left(x+1\right)^2\)

\(=\left(6x+9\right)^2-\left(2x+2\right)^2\)

\(=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\)

\(=\left(4x+7\right)\left(8x+11\right)\)

f) Ta có: \(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)

\(=-\left(b^2-2bc+c^2-a^2\right)\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=-\left[\left(b-c\right)^2-a^2\right]\cdot\left[\left(b+c\right)^2-a^2\right]\)

\(=-\left(b-c-a\right)\left(b-c+a\right)\left(b+c-a\right)\left(b+c+a\right)\)

g) Ta có: \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)

\(=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\)

\(=\left[a\left(x-y\right)+b\left(y-x\right)\right]\left[a\left(x+y\right)+b\left(x+y\right)\right]\)

\(=\left[a\left(x-y\right)-b\left(x-y\right)\right]\left(x+y\right)\left(a+b\right)\)

\(=\left(x-y\right)\left(a-b\right)\left(x+y\right)\left(a+b\right)\)

h) Ta có: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)

\(=\left(a^2+b^2-5+2ab+4\right)\left(a^2+b^2-5-2ab-4\right)\)

\(=\left[\left(a^2+2ab+b^2\right)-1\right]\left[\left(a^2-2ab+b^2\right)-9\right]\)

\(=\left(a+b-1\right)\left(a+b+1\right)\left(a-b-3\right)\left(a-b+3\right)\)

i) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)

\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)

\(=\left(-6x-18\right)\left(8x^2-18\right)\)

\(=-6\left(x+3\right)\cdot2\left(x^2-9\right)\)

\(=-12\left(x+3\right)^2\cdot\left(x-3\right)\)

k) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

l) Ta có: \(-4x^2+12xy-9y^2+25\)

\(=-\left(4x^2-12xy+9y^2-25\right)\)

\(=-\left[\left(2x-3y\right)^2-5^2\right]\)

\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)

m) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)

\(=\left(x-y\right)^2-\left(4m^2-4mn+n^2\right)\)

\(=\left(x-y\right)^2-\left(2m-n\right)^2\)

\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)

a) \(\left(2x+5\right)^2\)\(-\left(x-9\right)^2\)

=\(\left(2x+5+x-9\right).\left(2x+5-x+9\right)\)

=\(\left(3x-4\right).\left(x+14\right)\)

9 tháng 10 2018

Mình mới lớp 7 nên chỉ giải được 1 bài thôi!

\(3x^2-7x+2=3x^2-\left(6x+1x\right)+2=3x^2-6x-1x+2\)

\(3x\left(x-2\right)-1\left(x-2\right)=\left(x-2\right)\left(3x-1\right)=3\left(x-2\right)\left(x-\frac{1}{3}\right)\)

9 tháng 10 2018

Ở đầu dòng cuối cùng bạn thêm dấu "=" giúp mình nhé! Nãy mình đánh thiếu!

15 tháng 7 2016

a)x^2-(a+b)x+ab

= x^2 - ax - bx + ab

= (x^2 - ax) - (bx - ab)

= x(x-a) - b(x-a)

= (x-b)(x-a) 

b)7x^3-3xyz-21x^2+9z

c)4x+4y-x^2(x+y)

= 4(x + y) - x^2(x+y)

= (4-x^2) (x+y)

= (2-x)(2+x)(x+y)

d) y^2+y-x^2+x

= (y^2 - x^2) + (x+y)

= (y-x)(y+x)+ (x+y)

= (y-x+1) (x+y)

e)4x^2-2x-y^2-y

= [(2x)^2 - y^2] - (2x +y)

= (2x-y)(2x+y) - (2x+y)

= (2x -y -1)(2x+y)

f)9x^2-25y^2-6x+10y

31 tháng 8 2021

ko biết làm

 

12 tháng 10 2018

a) ( 3x -1 )2  - 16  

= (3x -1 )  - 4

( 3x -1 -4 ).( 3x -1 +4 )

b)  ( 5x-4 ) - 49x

= ( 5x-4 )   - (7x)2

=( 5x -4 -7x).( 5x -4 + 7x )

=( -2x -4 ) .( 12x -4 )

còn lại giống tương tự nha pạn 

~ hok tốt ~

12 tháng 10 2018

a, ( 3x - 1 )2 - 16

= (3x-1 ) 2 - 42

= [ 3x - 1 + 4 ] . [ 3x - 1 - 4 ]

 b, ( 5x - 4 )2 - 49x2

( 5x - 4 )2  - (7x)2

= [ 5x - 4 + 7x ] . [ 5x - 4 - 7x ]

c, 4x2 - ( 2x - 5 )2

= (2x)2 - ( 2x - 5 ) 2

= [ 2x + 2x - 5 ] . [ 2x - 2x - 5 ]

25 tháng 9 2016

baif 4 là tìm x đấy m,n ạ

 

25 tháng 9 2016

bn chờ đến 3 rưỡi nhé h mk bận

Bạn đăng nhiều quá nhưng mình chỉ biết phần \(\text{phân tích đa thức thành nhân tử}\) thôi 

\(x^2+2x-3\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-1\right)\left(x+3\right)\)

\(x^2-10x+9\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-9\right)\left(x-1\right)\)

\(x^2-2x-15\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-5\right)\left(x+3\right)\)

\(x^2-2x-48\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-8\right)\left(x+6\right)\)

\(x^2-10x+24\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-6\right)\left(x-4\right)\)

\(4x^2+4x-15\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(2x-3\right)\left(2x+5\right)\)

\(3x^2-7x+2\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-2\right)\left(3x-1\right)\)

\(4x^2-5x+1\)

\(\text{phân tích đa thức thành nhân tử}\)

\(\left(x-1\right)\left(4x-1\right)\)

27 tháng 9 2016

Bài 1: CMR các đa thức sau luôn dương vs mọi giá trị biến số:

a) x^2 + x +1

b) x^2 + 3x+3

c) x^2 + y^2 + 2(x-2y) +6

d) 2x^2 + y^2 + 2x( y-1) +2

Bài 2: Phân tích thành nhân tử:

a) x^2 + 2x-3

b) x^2 - 10x +9

c) x^2 - 2x -15

d) x^2 - 2x -48

e) x^2 - 10x+24

f)4x^2 + 4x -15

g) 3x^2 - 7x +2

h) 4x^2 - 5x +1

Bài 3: Tìm x biết :

a) x^2 +5x+6=0

b) x^2 - 10x + 16=0

c) x^2 - 10x +21=0

d) x^2 - 2x -3 =0

e) 2x^2 + 7x +3=0

f) x^2 - x- 6=0

Bài 4:

a)x^3 + 2x^2 - 3=0

b) x^3 - 7x -6=0

c) x^3 + x^2 +4=0

d) x^3 - 2x^2 - x+2 =0

Bạn đăng nhiều quá nhưng mình chỉ biết phần phân tích đa thức thành nhân tử thôi 

x2+2x−3

phân tích đa thức thành nhân tử

(x−1)(x+3)

x2−10x+9

phân tích đa thức thành nhân tử

(x−9)(x−1)

x2−2x−15

phân tích đa thức thành nhân tử

(x−5)(x+3)

x2−2x−48

phân tích đa thức thành nhân tử

(x−8)(x+6)

x2−10x+24

phân tích đa thức thành nhân tử

(x−6)(x−4)

4x2+4x−15

phân tích đa thức thành nhân tử

(2x−3)(2x+5)

3x2−7x+2

phân tích đa thức thành nhân tử

(x−2)(3x−1)

4x2−5x+1

phân tích đa thức thành nhân tử

(x−1)(4x−1)

dài quá !