K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{CBA}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

9 tháng 5 2018

\(\Delta ABC\) có BK là tia phân giác

\(\Rightarrow\) \(\dfrac{KC}{KA}\) = \(\dfrac{BC}{BA}\) (1)

\(\Delta AHC\) có AD là tia phân giác

\(\Rightarrow\) \(\dfrac{DC}{DH}\) = \(\dfrac{AC}{AH}\) (2)

Xét \(\Delta ABC\)\(\Delta HBA\) có:

góc B chung

góc BAC = BHA(=90)

\(\Rightarrow\) \(\Delta ABC\)\(\sim\)\(\Delta\)HBA (g-g)

\(\Rightarrow\) \(\dfrac{BC}{BA}\) = \(\dfrac{AC}{HA}\) (3)

Từ (1)(2)(3)\(\Rightarrow\)\(\dfrac{KC}{KA}\) = \(\dfrac{DC}{DH}\)

\(\Rightarrow\) KD//AH

9 tháng 5 2018

bạn ơi KD không song song được với AD

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

2 tháng 7 2021

a. Xét ΔABC và ΔHBA

. BAC=BHA(=90)

. ABH chung

⇒ ΔABC~ΔHBA (g.g)