Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét nửa đường tròn (O) đường kính BC có điểm N thuộc (O) => ^CNB = 900
=> ^CNE = 1800 - ^CNB = 900. Xét tứ giác CDNE có:
^CDE = ^CNE = 900 => Tứ giác CDNE nội tiếp đường tròn (đpcm).
2) Ta có điểm M thuộc nửa đường tròn (O) đường kính BC => ^CMB = 900
=> BM vuông góc CE. Xét \(\Delta\)BEC:
BM vuông góc CE; ED vuông góc BC; BM giao ED tại K => K là trực tâm \(\Delta\)BEC
=> CK vuông góc BE. Mà CN vuông góc BE (Do ^CNB = 900) => 3 điểm C;K;N thẳng hàng (đpcm).
3) Gọi giao điểm của MN với DE là H. Lấy F là trung điểm của EH. BH cắt CF tại điểm P.
Xét tứ giác CMHD: ^CMH = ^CDH = 900 => CMKD nội tiếp đường tròn => ^MCK = ^MDK (1)
Tương tự: ^NBK = ^NDK (2)
Từ (1) & (2) => ^MDK = ^NDK hay ^MDH = ^FDN
Tương tự: ^DMB = ^NMB => ^DMH = 2.^DMB (3)
Dễ thấy tứ giác BDME nội tiếp đường tròn => ^DMB = ^BED (2 góc nt chắn cung BD)
Hay ^DMB = ^NEF. Xét \(\Delta\)ENH vuông tại N: H là trung điểm EH
=> \(\Delta\)NEF cân tại F. Do ^DFN là góc ngoài \(\Delta\)NEF => ^DFN = 2.^NEF
Mà ^DMB = ^NEF (cmt) => ^DFN = 2.^DMB (4)
Từ (3) & (4) => ^DMH = ^DFN. Xét \(\Delta\)DMH và \(\Delta\)DFN:
^DMH = ^DFN ; ^MDH = ^FDN (cmt) => \(\Delta\)DMH ~ \(\Delta\)DFN (g.g)
=> \(\frac{DM}{DF}=\frac{DH}{DN}\)=> \(DH.DF=DM.DN\)(5)
Dễ chứng minh \(\Delta\)CMD ~ \(\Delta\)NBD => \(\frac{DM}{DB}=\frac{DC}{DN}\Rightarrow DM.DN=DB.DC\)(6)
Từ (5) & (6) => \(DH.DF=DB.DC\)\(\Rightarrow\frac{DH}{DB}=\frac{DC}{DF}\)
\(\Rightarrow\Delta\)CDH ~ \(\Delta\)FDB (c.g.c) => ^DHC = ^DBF. Mà ^DHC + ^DCH = 900
=> ^DBF + ^DCH = 900 => CH vuông góc BF.
Xét \(\Delta\)CFB: FD vuông góc BC; CH vuôn góc BF; H thuộc FD => H là trực tâm \(\Delta\)CFB
=> BH vuông góc CF (tại P). Ta có nửa đg trong (O) đg kính BC và có ^CPB = 900
=> P thuộc nửa đường tròn (O) => Tứ giác CMPB nội tiếp (O)
=> ^BMP = ^BCP (2 góc nt chắn cung BP) Hay ^HMP = ^DCP
Xét tứ giác CPHD: ^CPH = ^CDH = 900 => ^DCP + ^DHP = 1800
=> ^HMP + ^DHP = 1800 hay ^HMP + ^KHP = 1800 => Tứ giác MPHK nội tiếp đg tròn
=> ^KMH = ^KPH (2 góc nt chắn cung KH) hay ^KMN = ^KPB.
Lại có tứ giác EMKN nội tiếp đg tròn => ^KMN = ^KEN => ^KMN = ^KEB
=> ^KPB = ^KEB => Tứ giác BKPE nội tiếp đg tròn. Mà 3 điểm B;K;E cùng thuộc (I)
=> Điểm P cũng thuộc đg tròn (I) => IP=IB => I thuộc trung trực của BP
Mặt khác: OP=OB => O cũng thuộc trung trực của BP => OI là trung trực của BP
=> OI vuông góc BP. Mà CF vuông góc BP (cmt) => OI // CF (7)
I nằm trên trung trực của EK và F là trung điểm EK => IF vuông góc EK => IF vuông góc d
OC vuông góc d => OC // IF (8)
Từ (7) & (8) => Tứ giác COIF là hình bình hành => IF = OC = R (bk của (O))
=> Độ dài của IF không đổi. Mà IF là khoảng cách từ I đến d (Do IF vuông góc d)
=> I nằm trên đường thẳng d' // d và cách d một khoảng bằng bán kính của nửa đường tròn (O)
Vậy điểm I luôn nằm trên d' cố định song song với d và cách d 1 khoảng = bk nửa đg tròn (O) khi M thay đổi.
1) Do DN // AB nên ^DNC = ^BAC (Đồng vị). Mà ^BAC = ^DBC nên ^DNC = ^DBC => Tứ giác BNCD nội tiếp
Suy ra 5 điểm B,O,N,C,D cùng thuộc 1 đường tròn => ^BND = ^BOD = ^COD = ^CND
Ta có: DN // AB => ^BND = ^ABN. ^CND = ^NAB => ^NBA = ^NAB => \(\Delta\)ANB cân tại N (đpcm).
2) Ta có: ^DCM = ^DNB = ^DNC => \(\Delta\)DMC ~ \(\Delta\)DCN => DC2 = DM.DN. Dễ thấy: DC2 = DI.DA
Suy ra: DM.DN = DI.DA => Tứ giác AIMN nội tiếp => ^IMK = ^IAN = ^IBC => \(\Delta\)MIK ~ \(\Delta\)MKB (g.g)
=> KM2 = KI.KB. Ta lại có: ^KDI = ^IAB = ^KBD => \(\Delta\)IKD ~ \(\Delta\)DKB (g.g) => KD2 = KI.KB
Từ đó: KM2 = KD2 => KM = KD = DM/2. Do G là trung điểm KD nên \(\frac{GM}{GK}=3\) (1)
Gọi giao điểm của tia AD và tia ND là R. Theo hệ quả ĐL Thales: \(\frac{QB}{QM}=\frac{AB}{MR}\) (2)
Nếu ta gọi giao của PI với BC là V, theo phép vị tự thì I là trung điểm của PV. Từ đó suy ra: GM=GR
Mà GD = GK = GM/3 nên DK = MR/3. Lại áp dụng hệ quả ĐL Thales: \(\frac{IK}{IB}=\frac{DK}{AB}=\frac{MR}{3AB}\) (3)
Từ (1),(2),(3) suy ra: \(\frac{GM}{GK}.\frac{QB}{QM}.\frac{IK}{IB}=3.\frac{AB}{MR}.\frac{MR}{3AB}=1\). Theo đk đủ của ĐL Mélelaus thì 3 điểm Q,I,G tương ứng nằm trên các cạnh BM,BK,KM của \(\Delta\)BKM thẳng hàng (đpcm).
3) Gọi (HCS) cắt (O) tại điểm thứ hai là T. E là giao điểm của OD và BC.
Ta thấy: ^TBD = ^TCB = ^THS = ^THD (Góc tạo bởi tiếp tuyến và dây + Góc nội tiếp) => Tứ giác BHTD nội tiếp
Từ đó: 5 điểm B,H,E,T,D cùng thuộc 1 đường tròn => ^BTD = ^BED = 900
Mặt khác: ^DTE = 1800 - ^DBE = 1800 - ^BAC = ^BTC => ^DTE = ^BTC => ^BTD = ^CTE
Suy ra: ^CTE = 900 => T nằm trên đường tròn (CE) cố định. Mà T cũng thuộc (O) cố định.
Nên T là điểm cố định. Do đó: Dây CT của đường tròn (HCS) cố định
=> Tâm L của (HCS) luôn nằm trên đường trung trực của đoạn CT cố định (đpcm).
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề
Xin lỗi các bạn nhé
Bài 3: góc ABD = 60 độ
Bài 4: AOB = 90 độ